
Swizzleflow: Synthesis of
Irregular Data Mappings in

Accelerator Kernels Using Novel
Pruning Abstractions

Krzysztof Drewniak with Rastislav Bodik
University of Washington Qualifying Examination

1

Accelerators constrain programs

● Accelerators = GPUs, vector processors, FPGAs; used for fast math
● Obeying hardware limits → often dramatic speedups
● Data movement limits: ex. parallel banks or coalescing loads on GPUs
● Special instructions require data or problem in a particular form

○ Ex. HVX processor Gaussian filter — 2x faster than Halide

Motivation

2

Accelerator constraints: GPU Transpose

● Coalescing loads stall the GPU less
● Fast algorithm uses swizzles —

irregular mappings of data to
memories or compute elements

● Give dramatic speedups even
though algorithm is more complex

● We synthesized this, improving on
previous work (Trove, PPoP ‘14)

3

Motivation

Modeling accelerator kernels

New language to represent executions
of swizzle kernels portably (as shuffling
arrays around) — portable
representation of accelerator code

Overview

4

memory: [16] = [x0, … x15]
input: [4, 4] = reshape(memory)
s1: [4, 4] = swizzle_row(λi, j. j - i % 4)(input)
s2: [4, 4] = swizzle_col(λi, j. 3 * i + j % 4)(s1)
s3: [4, 4] = swizzle_row(λi, j. j + i % 4)(s2)

for (int j = 0; j < T; j++)
 for (int i = 0; i < 4; i++)
 out[j][i] = input[i][j]

Transpose

Swizzleflow code for fast GPU transpose algorithm, swizzles highlighted

Synthesis

5

Overview

Viability tests

Our innovation: analyzing the
synthesis problem means we
can reject large parts of the tree
without searching them

Ex. For each output location, is
the value wanted there in a
location it can come from given
the rest of the program?

Overview

6
Reachability to s3[1, 0] Using s3[1, 0] to reject states

Preview of results

● Highly scalable algorithm
● Viability tests prune most of search tree (over 99%)
● Orders of magnitude improvements over previous work

Overview

7

Efficient transpose on GPUs

8

Modeling swizzling kernels

int j = get_thread_id(); // T threads in parallel
register float s1[4], s2[4], s3[4];
for (int i = 0; i < 4; i++)
 s1[i] = input[i][j - i % T];
for (int i = 0; i < 4; i++)
 s2[i] = s1[(3 * i + j) % 4];
for (int i = 0; i < 4; i++)
 s3[i] = __shfl_sync(FULL_MASK, s2[i], j + i % T);
return s3;

for (int j = 0; j < T; j++)
 for (int i = 0; i < 4; i++)
 out[j][i] = input[i][j]

Specification

Efficient swizzling implementation

● T = 32, but 4 in examples
● 4 is smallest example of

one solution class

The core of swizzling transpose (1)
for (int i = 0; i < 4; i++)
 s1[i] = input[i][j - i % T];
for (int i = 0; i < 4; i++)
 s2[i] = s1[(3 * i + j) % 4];
for (int i = 0; i < 4; i++)
 s3[i] = __shfl_sync(FULL_MASK, s2[j], j + i % T);

9

Modeling swizzling kernels

for (i in 0..4, j in 0..T)
 s1[i][j] = input[i][j - i % T];
for (i in 0..4, j in 0..T)
 s2[i][j] = s1[(3 * i + j) % 4][j];
for (i in 0..4, j in 0..T)
 s3[i][j] = s2[i][j + i % T];

GPU swizzling code

Core swizzles

The core of swizzling transpose (2)

10

Modeling swizzling kernels

memory: [16] = [x0, … x15]
input: [4, 4] = reshape(memory)
s1: [4, 4] = swizzle_row(λi, j. j - i % 4)(input)
s2: [4, 4] = swizzle_col(λi, j. 3 * i + j % 4)(s1)
s3: [4, 4] = swizzle_row(λi, j. j + i % 4)(s2)

Swizzleflow language gives a higher-level expression of the data movement

for (i in 0..4, j in 0..T)
 s1[i][j] = input[i][j - i % T];
for (i in 0..4, j in 0..T)
 s2[i][j] = s1[(3 * i + j) % 4][j];
for (i in 0..4, j in 0..T)
 s3[i][j] = s2[i][j + i % T];

Drawing swizzle kernel executions
memory: [16] = [x0, … x15]
input: [4, 4] = reshape(memory)

s1: [4, 4] = swizzle_row(λi, j. j - i % 4)(input)

s2: [4, 4] = swizzle_col(λi, j. 3 * i + j % 4)(s1)

s3: [4, 4] = swizzle_row(λi, j. j + i % 4)(s2)

11

Modeling swizzling kernels

Gathers

● Each output element is either a load from an input, 0 (identity), or ⊥
(undefined, shouldn’t appear in output, etc.)

● No dependency on values in arguments
● General ex.:
● Model most aspects of a swizzle kernel
● Generalize permutations

○ Broadcast is a gather
● Inputs and output have fixed shape/type

12

Modeling swizzling kernels

for (int i = 0; i < 4; i++)
 s1[i] = input[i][?gpu_swizzle(j, i, 4, T)];
for (int i = 0; i < 4; i++)
 s2[i] = s1[?gpu_swizzle(i, j, T, 4)];
for (int i = 0; i < 4; i++)
 s3[i] = __shfl_sync(FULL_MASK, s2[i], ?gpu_swizzle(j, i, 4, T));

Sketching transpose

13

Synthesis

for (i in 0..4)
 for j in 0..T)
 assert s3[i][j] == input[j][i]

Imperative sketch

Imperative specification

for (int i = 0; i < 4; i++)
 s1[i] = input[i][j - i % T];
for (int i = 0; i < 4; i++)
 s2[i] = s1[(3 * i + j) % 4];
for (int i = 0; i < 4; i++)
 s3[i] = __shfl_sync(FULL_MASK, s2[i], j + i % T);

Imperative solution

Sketching transpose in Swizzleflow

14

Synthesis

memory: [16] = [x0, … x15]
input: [4, 4] = reshape(input)
s1: [4, 4] = ?gpu_swizzle_row(input)
s2: [4, 4] = ?gpu_swizzle_col(s1)
s3: [4, 4] = ?gpu_swizzle_row(s2)
// specification
goal s3 == [[x0, x4, x8, x12], …]

The holes (like ?gpu_swizzle_row) are sets of gathers with the same type
s1: [4, 4] = swizzle_row(λi, j. j - i % 4)(input)
s2: [4, 4] = swizzle_col(λi, j. 3 * i + j % 4)(s1)
s3: [4, 4] = swizzle_row(λi, j. j + i % 4)(s2)

Swizzleflow sketch

Solution

GPU swizzle template

15

?gpu_swizzle sketch defines the search space that contains fanning
followed by rotation with optional grouping (taken from Swizzle Inventor)
(Swizzleflow selects instructions on HVX

rotation

grouping

co-prime fanning

non-co-prime fanning

fan size

fan size

Synthesis

Figure from Swizzle Inventor (ASPLOS ‘19)

Synthesizing transpose in Swizzleflow

16

Synthesis

memory: [16] = [x0, … x15]
input: [4, 4] = reshape(input)
s1: [4, 4] = ?gpu_swizzle_row(input)
s2: [4, 4] = ?gpu_swizzle_col(s1)
s3: [4, 4] = ?gpu_swizzle_row(s2)
// specification
goal s3 == [[x0, x4, x8, x12], …]

Solve with enumerative search

Non-viable intermediate states

17

Viability tests

~1013 paths for 32 by 4 transpose!

Can’t explore them all

How do we detect the non-viable ones?

The reachability property

Each output location’s value must be able to come from a location in the current
state with that value. 18

Viability tests

Pre-computing reachability

● Find source locations in
candidate that output
location can come from

● Check if a location each
output can come from
contains needed value

● If any fails, reject state

19

Viability tests

Reachability to s3[1, 0] Using s3[1, 0] to reject states

Simultaneously tracking multiple locations

● Tracking one location isn’t enough
○ Quickly find that every location is a source
○ Causes benchmarks to time out

● “Where can outputs i and j come from together?”
● Two locations is sufficient

○ 99.6% of states skipped on average
○ 45% of benchmarks with solutions prune optimally

● 3+ locations
○ Data is too big (~1M nodes per output triple for

32x4) — timeout when computing
20

Viability tests

Reachability testing is dataflow analysis

● “Which pairs of locations can the values in this pair of output locations
have come from?” is a dataflow analysis

● Characteristics
○ Finite (fixed set of locations we track)
○ Distributive (only need to look at one function output to know

where it can come from so the analysis distributes over union)
○ Subset (we care about which locations can reach)

● Can be converted to graph reachability[1]
○ Each statement“explodes” into one node per tracked location

21

Viability tests

[1] Reps, T., Horwitz, S., & Sagiv, M. (2003). Precise interprocedural dataflow analysis via graph reachability.. POPL ‘95

Computing reachability

1. For each (set of) functions, compute
possible dataflow from outputs to inputs

2. Compose resulting statement matrices
with multiplication

3. This solves reachability problem for all
output location pairs at once
a. All dataflow graphs have the same

structure, only the x in “The values in
x can com from where?” changes

22

Viability tests

Function set to statement matrix

Reachability matrix statistics

● All but two statement matrices for GPUs have < 5% bits set
○ 82% of them have less than 1% of entries set

● Compositions (row + column swizzles) raise density, still works
● Exploiting sparsity and boolean multiply took 32x5 transpose multiply

times to 0.08 to 7 seconds each from 120s each (dense floats)

23

Viability tests

Convolution

24

Modeling swizzling kernels

// on W (generally 32) threads
int i = get_thread_id();
float loaded[2] = {x[i], x[W + i]};
float accum = 0;
for (int j = 0; j < K; j++)
 float to_send = loaded[i >= j ? 0 : 1];
 float received = __shfl_sync(FULL_MASK,
 to_send, i + j % W);
 accum += received;
out[t] = accum;

Imperative convolution program

Threads load values to registers and
read from their neighbors

// Spec
for (int i = 0; i < W; i++)
 out[i] = 0
 for (int j = 0; j < K; j++)
 out[i] += x[i + j]

Convolution

25

Modeling swizzling kernels

// on W (generally 32) threads
int i = get_thread_id();
float loaded[2] = {x[t], x[W + t]};
float accum = 0;
for (int j = 0; j < K; j++)
 float to_send = loaded[i >= j ? 0 : 1];
 float received = __shfl_sync(FULL_MASK, to_send, i + j % W);
 accum += received;
out[t] = accum;

Imperative convolution program

x: [34] = [x0, ... , x34]
// arrays are threads by registers/iteration
// put ⊥ in out-of-bounds locations
loaded: [32, 2] = load_trunc(x)
to_send: [32, 3] = select(λi, j. i >= j)(loaded)
received: [32, 3] = swizzle_col(λi, j. i + j % 3)(to_send)
out: [32] = fold(+) received

Swizzleflow convolution program

Loop unrolled, arithmetic abstracted

Convolution execution

26

Modeling swizzling kernels

x: [5] = [x1, ... , x5]

loaded: [3, 2] = load_trunc(x)

to_send: [3, 3] = select(λi, j.i >= j)(loaded)

received: [3, 3] = swizzle_col(λi, j. i + j % 3)(to_send)

out: [3] = fold(+) received

Folds

● Represent reductions (+, *, max, …)
● Order of elements doesn’t matter
●
●
●
● fold{} = 0
● fold*{fold+{a, b}, c}} is (a + b) * c

○ Not equal to fold+{a, b, c}

27

Modeling swizzling kernels

Gather and fold are enough

● Fixed-size arrays: kernels have bounded inputs, loops
● No if (x[i] < 0) — simplifies analysis
● No loop-carried dependencies except accumulation
● Limitations

○ No data-dependent indexing → no sparsity (which is hard)
○ No lookup tables (ex. Inverse sqrt() on HVX)
○ HVX: No built-in way to find arithmetic instructions

28

Modeling swizzling kernels

Convolution synthesis

29

Synthesis

Problem: We want to see where can come from, but only have
 , , and available earlier in the search.
Solution: Ensure each available subterm (pair) reaches the output. For
analysis, folds put multiple values in a box

x: [34] = [x0, ... , x34]

loaded: [32, 2] = load_trunc(x)
to_send: [32, 3] = ?select(loaded)
received: [32, 3] = ?gpu_swizzle_col(to_send)

out: [32] = fold received

// [x0 + x1 + x2, x1 + x2 + x3, …]
goal out == conv{k=3}([x0, ..., x34])

Universes

● Question: Which terms could exist
in in a given variable?

● Relevant to
○ Folds (this is more precise

than using symbols)
○ Multiple inputs (see right)

● Each variable gets a universe
● Use subterms in universes of all

live variables

30

Viability tests

Copy counts

● Comes up in polynomial multiply — 16 keep_if()s, 8 are false
● Detecting extra term copies brings that search from timeout to 3s
● Compute bounds on how often the value in each location appears in

the whole output. Reject if sum of bounds for locations containing a
term doesn’t include true count.

31

Viability tests

x = ?pick(a, 0)
y = ?pick(a, 0)
z = ?pick(b, 0)
o = x + y + z
assert o == a + b

For the sketch

x = a
y = a
z = ?pick(b, 0)
o = x + y + z
assert o == a + b

the partial program cannot be correct. There
are too many copies of a.

The reachability test
won’t detect this.

Evaluation questions

1. Scalability with the problem size
2. Efficiency of pruning
3. Comparison with Swizzle Inventor

32

Results

Q1: Scalability

● Caching viability data for swizzles between benchmarks is helpful
● Trove is 32 x width transpose
● Searching for all solutions: determinism & no cost model 33

Results

HVX Gaussian time: 0.6s

Q1; Scalability limits

● Running out of memory
○ 32x11 transpose (each matrix has (32 * 11)4 bits)
○ 15-long 1D convolution
○ 32x15 transposed sum

● Function set creation time (usually negligible)
○ 11x11 2D stencil (needs cond1 : 0 ? cond2 : 1 ? cond2 ? 2 : 3)

● Abstraction limits
○ Width-8 polynomial multiply with shared memory needs an hour

■ Only Swizzle Inventor benchmark we can’t do

34

Results

Q2: Pruning effectiveness

35

Results

Benchmark States visited /
oracle

States visited Search space size

2D stencil (k=5) 1.00 113 4.4e07

2D stencil (k=7) 1.01 4598 1.4e11

Trove, CRC (s=7) 1.01 3534 4.6e11

Trove, RCR (s=7) 2.24 14363 2.2e13

1D convolution (k=3) 1.93 2894 1.9e09

FFM (width=8, registers 27.6 67472 2.6e42

HVX Gaussian instructions 51.3 116111 1.5e15

45% of menchmarks had oracle-like performance

Q2: Effect of abstraction on search

36

Results

● Search almost always <1s
● Matrices are cached

between problems
● Highly effective pruning

reduces search time
● Boolean matrix multiply

Q3: Speedups over Swizzle Inventor

37

Results

Q3: Removing grammar restrictions

● For larger benchmarks, Swizzle Inventor used GPU swizzle subset
● In Swizzleflow, we didn’t need this (ex. could add back grouping)
● Pre-computing pruning faster than ad-hoc SMT discovery

○ Except for CRC Trove with restricted grammar and shmem FFM
● Using sets of functions allowed semantic deduplication of grammar

38

Results

Related work

● Dataflow-based pruning for superoptimization (OOPSLA ‘20)
○ Prunes search for best optimization of LLVM IR
○ Reasons about what bits can/must be set to reject holes
○ Ex. x << C can’t optimize (x + 1) | 1

39

Acknowledgements

● Ras Bodik —advice, feedback, pushing to simplify the presentation
● Sam Kaufman — Helpful sounding board when I was stuck
● Mazz Ahmad — HVX challenge problems and performance numbers
● An Wang — Exploring transpose solutions to give benchmarks

40

Summary

1. Accelerators need swizzles for performance
2. Swizzleflow models swizzling programs on multiple platforms.
3. Swizzleflow allows programmers to synthesize swizzles.
4. New viability tests allow us to prune most of our search space.
5. We are more scalable than previous work because of this.

41

Thank you all for coming! Questions?

42
Reachability to s3[1, 0] Using s3[1, 0] to

reject states

The slide graveyard

43

Why synthesis and not a compiler?

● Compilers change a program locally to optimize
● Changing whole data movement isn’t made of optimization steps
● Need search and/or human input

44

Motivation

for (int j = 0; j < T; j++)
 for (int i = 0; i < 4; i++)
 out[j][i] = input[i][j]

int j = get_thread_id(); // T threads in parallel
register float s1[4], s2[4], s3[4];
for (int i = 0; i < 4; i++)
 s1[i] = input[i][j - i % T];
for (int i = 0; i < 4; i++)
 s2[i] = s1[(3 * i + j) % 4];
for (int i = 0; i < 4; i++)
 s3[i] = __shfl_sync(FULL_MASK, s2[i], j + i % T);
return s3;

Why Swizzleflow?

● Other codegen tools don’t focus on swizzles
○ AutoTVM, Lift, etc. work on scheduling - breaking a large problem

■ Assume optimized kernels
■ Swizzleflow could be integrated here

● Address limitations of other synthesis tools
○ Much work focuses on one platform (SIMD, GPU)
○ Swizzle Inventor (previous work) only targets GPUs and

significantly limited search space for efficiency
■ We resolve these limitations

45

Motivation

[1] Phitchaya Mangpo Phothilimthana et al.. Swizzle Inventor:Data Movement Synthesis for GPU Kernels. 2019. In ASPLOS.

Accelerator programming is hard
● Accelerators include GPUs, vector processors (HVX, SIMD), FPGAs
● Used for fast math in multiple domains
● To be fast, accelerators constrain programs & offer special features
● Ex. GPUs want memory read in blocks and have inter-thread shuffle
● Swizzles: irregular mappings of data to memory and compute

○ Include things like modulo — not just tiling or affine
○ If not made by hand, tools usually only look for affine maps

Overview

46

Accelerator constraints: HVX Gaussian

● Many HVX instructions work on odd-even register pairs
● Exploiting this layout gives 2x speedup over Halide

○ Halide inserts a lot of unpacking and repacking
47

Motivation

The Swizzleflow language - partial grammar
Program ::= Statement+
Types are the dimensions of each array
Type ::= ‘[‘ (integer ‘,’)* integer ‘,’? ‘]’
Goals and function definitions omitted
Statement ::= ‘goal’ ‘:’ Type GoalDef | ‘define’ FunctionsDef
 | variable ‘:’ Type ‘=’ Operation
Operation ::= ‘fold’ variable Abstract arithmetic
 A gather, or set of them, with optional arithmetic after
 | ‘fold’? ‘?’? func_name ‘(‘ (variable ‘,’)* variable ‘)’
 | Literal

48

Synthesis

Search

● At each statement, choose value
for hole

● If current state is viable, search
next statement

● On non-viable or wrong result,
backtrack

● Can parallelize independent initial
segments

● Works well due to viability tests
● Get all results because no cost

model 49

Synthesis

IFDS - backup

● Interprocedural Flow-Sensitive Dataflow Analylis by Reps[1]
● (We don’t need procedures)
● Can convert dataflow into graph reachability
● Domain of dataflow facts D
● Each program edge has f : 2D → 2D that distributes over union

○ Encodes transitions between facts
● “Explode” program graph to track reachability between dataflow facts

50

Viability

Reps, T., Horwitz, S., & Sagiv, M. (2003). Precise
interprocedural dataflow analysis via graph
reachability.

Contents of Swizzleflow arrays
Value ::= Identity 0 | Not defined ⊥ | Term
Symbol ::= Defined by problem [word not otherwise reserved, ex. x1]
Term ::= Symbol | ‘fold’ ‘{‘ (Term ‘,’)* Term ‘}’

● 0 is the identity
● ⊥ includes out-of-bounds read, but also any term that isn’t a subterm

of the goal (as an optimization)
● fold{a_1, …, a_k, 0} = fold{a_1, … a_k}
● fold {} = 0
● fold{fold{a, b}, c} is , for example, (a + b) * c and is not fold{a, b, c}

51

Synthesis

Code for sketch

52

x: [34] = [x0, ... , x34]

loaded: [32, 2] = load_trunc(x)
to_send: [32, 3] = ?reg_select(loaded)
received: [32, 3] = ?col_swizzle(to_send)

out: [32] = fold
 ?cond_keep{fold_len=3}(received)

goal: [32] conv{k=3}([x0, ..., x34])

The Swizzleflow language
● Portable model of swizzling

kernels as mapping between
arrays

● Focuses on data movement
● Threads, loops, etc. unrelled to

array dimensions
● Arithmetic → folds
● Restrictions come from domain

— make reasoning easier

53

Modeling swizzling kernels

Synthesis problem

54

Synthesis

All gathers in
each hole have
the same type

Viability tests

● Approximate which executions can be correct
● Use this to prove states can’t be part of a correct program
● Main test uses a dataflow analysis to reject unworkable candidates
● Notation: v i is the variable that holds v[i]

55

Viability

IFDS

56

Viability

Reps, T., Horwitz, S., & Sagiv, M. (2003). Precise
interprocedural dataflow analysis via graph
reachability.

● Convert dataflow analysis to graph
reachability

● We don’t need interprocedural
● “Explode” graph to reachability

between dataflow facts
● Functions distribute over

union/branches

Maybe-uninitialized variables example for IFDS

Dataflow in Swizzleflow

● We have a family of dataflow problems
● Effectively like a taint analysis
● Reaches_{g i} - at each statement, the set of v j such that the value in

v j can be placed in g i where g is the program output/goal
● Works backwards from the goal
● Can compute by looking at each other, taking unions, composing
● Reality: we need Reaches_{g i, g j} for pairs of locations

○ Tracking one location means rotations can do anything
● Also abstracts folds — multiple values reach one output
● TODO: draw this

57

Viability

The pair-reachability test

● Each (pair of) locations in the goal must be reachable by correct
terms, or candidate must be wrong

● For each a, b in universe(stmt)2 and each g i, g j such that a ∈ g[i] and
b ∈ g[j]
○ Must have v l, w m in Reaches_{g i, g j}(stmt) so v[l] = a, w[m] = b

58

Viability

Universes

● Which terms to test?
● Ex. goal has a + b, but only have a and b
● Or - literal for constants not run yet
● Solution: each variable (and statement, through union over live vars)

gets a universe of potential terms
● How?

○ Literal: all terms in the literal that are subterms of the goal
○ Gather: union of universes of arguments
○ Fold: all combinations of universe of argument that are in goal

● TODO: add example/draw one/clean up these bullet points
59

Viability

The global graph

● Exploited graphs for each Reaches_(g i, g j) are the same except for
their starting node

● Also have nice layers - one for each statement in the program
● So, compute each layer, then compute all-source, all-target

reachability with matrix multiply
● Fast and cacheable - key to our efficiency
● TODO: I could’ve sworn I had a good picture of this

60

Viability

Copy count test

● Problem with pair-reachability: can’t catch extra copies of values
○ Ex. conditions on add should’ve made something 0 but didn’t

● Working backwards, compute lower and upper bounds on how many
times the value of v i can be in the output
○ For gathers: bounds on inputs are sums of bounds or outputs that

read from there - min/max over set of functions
○ For folds: Each input collected is copied as many times as output

● To test: for each a in universe(stmt),, sum up min/max bounds on
each v i equal to a, make sure actual number of as needed is in
bounds

● TODO: too late at night to make it a good picture 61

Viability

Abstract execution?

● Too slow — can’t get enough to be useful, even with caching
● Adjusting coarseness of abstraction didn’t help
● But … 62

Viability tests

One idea: only
track a subset
of locations,
see if the
terms there
can go where
they’re needed

Choice of abstractions

● With one-location reachability, benchmarks time out
● Three-location data does not fit in RAM for larger benchmarks
● Copy count is necessary

○ Without it, large polynomial multiply benchmark goes from 3
seconds to timeout

● Note from audience: move this up

63

Results

Q2: Abstraction effectiveness

● In many cases, close to optimal pruning
● Deviations

○ Combining multiple inputs (polynomial, weights in convolution)
○ HVX — later instructions could fix mistakes (abstractly)

64

Results

