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Accelerators constrain programs

● Accelerators = GPUs, vector processors, FPGAs; used for fast math
● Obeying hardware limits → often dramatic speedups
● Data movement limits: ex. parallel banks or coalescing loads on GPUs
● Special instructions require data or problem in a particular form

○ Ex. HVX processor Gaussian filter — 2x faster than Halide

Motivation
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Accelerator constraints: GPU Transpose 

● Coalescing loads stall the GPU less
● Fast algorithm uses swizzles — 

irregular mappings of data to 
memories or compute elements

● Give dramatic speedups even 
though algorithm is more complex

● We synthesized this, improving on 
previous work (Trove, PPoP ‘14)
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Motivation



Modeling accelerator kernels

New language to represent executions 
of swizzle kernels portably (as shuffling 
arrays around) —  portable 
representation of accelerator code

Overview
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memory: [16]   = [x0, … x15]
input:  [4, 4] = reshape(memory)
s1: [4, 4] = swizzle_row(λi, j. j - i % 4)(input)
s2: [4, 4] = swizzle_col(λi, j. 3 * i + j % 4)(s1)
s3: [4, 4] = swizzle_row(λi, j. j + i % 4)(s2)

for (int j = 0; j < T; j++)
  for (int i = 0; i < 4; i++)
    out[j][i] = input[i][j]

Transpose

Swizzleflow code for fast GPU transpose algorithm, swizzles highlighted



Synthesis
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Overview



Viability tests

Our innovation: analyzing the 
synthesis problem means we 
can reject large parts of the tree 
without searching them

Ex. For each output location, is 
the value wanted there in a 
location it can come from given 
the rest of the program?

Overview
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Reachability to s3[1, 0] Using s3[1, 0] to reject states



Preview of results

● Highly scalable algorithm
● Viability tests prune most of search tree (over 99%)
● Orders of magnitude improvements over previous work

Overview
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Efficient transpose on GPUs
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Modeling swizzling kernels

int j = get_thread_id(); // T threads in parallel
register float s1[4], s2[4], s3[4];
for (int i = 0; i < 4; i++)
  s1[i] = input[i][j - i % T];
for (int i = 0; i < 4; i++)
  s2[i] = s1[(3 * i + j) % 4];
for (int i = 0; i < 4; i++)
  s3[i] = __shfl_sync(FULL_MASK, s2[i], j + i % T);
return s3;

for (int j = 0; j < T; j++)
  for (int i = 0; i < 4; i++)
    out[j][i] = input[i][j]

Specification

Efficient swizzling implementation

● T = 32, but 4 in examples
● 4 is smallest example of 

one solution class



The core of swizzling transpose (1)
for (int i = 0; i < 4; i++)
  s1[i] = input[i][j - i % T];
for (int i = 0; i < 4; i++)
  s2[i] = s1[(3 * i + j) % 4];
for (int i = 0; i < 4; i++)
  s3[i] = __shfl_sync(FULL_MASK, s2[j], j + i % T);
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Modeling swizzling kernels

for (i in 0..4, j in 0..T)
  s1[i][j] = input[i][j - i % T];
for (i in 0..4, j in 0..T)
  s2[i][j] = s1[(3 * i + j) % 4][j];
for (i in 0..4, j in 0..T)
  s3[i][j] = s2[i][j + i % T];

GPU swizzling code

Core swizzles



The core of swizzling transpose (2)
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Modeling swizzling kernels

memory:  [16] = [x0, … x15]
input: [4, 4] = reshape(memory)
s1: [4, 4] = swizzle_row(λi, j. j - i % 4)(input)
s2: [4, 4] = swizzle_col(λi, j. 3 * i + j % 4)(s1)
s3: [4, 4] = swizzle_row(λi, j. j + i % 4)(s2)

Swizzleflow language gives a higher-level expression of the data movement 

for (i in 0..4, j in 0..T)
  s1[i][j] = input[i][j - i % T];
for (i in 0..4, j in 0..T)
  s2[i][j] = s1[(3 * i + j) % 4][j];
for (i in 0..4, j in 0..T)
  s3[i][j] = s2[i][j + i % T];



Drawing swizzle kernel executions
memory: [16]   = [x0, … x15]
input:  [4, 4] = reshape(memory)

s1: [4, 4] = swizzle_row(λi, j. j - i % 4)(input)

s2: [4, 4] = swizzle_col(λi, j. 3 * i + j % 4)(s1)

s3: [4, 4] = swizzle_row(λi, j. j + i % 4)(s2)
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Modeling swizzling kernels



Gathers

● Each output element is either a load from an input, 0 (identity), or ⊥ 
(undefined, shouldn’t appear in output, etc.)

● No dependency on values in arguments
● General ex.:
● Model most aspects of a swizzle kernel
● Generalize permutations

○ Broadcast is a gather
● Inputs and output have fixed shape/type

12

Modeling swizzling kernels



for (int i = 0; i < 4; i++)
  s1[i] = input[i][?gpu_swizzle(j, i, 4, T)];
for (int i = 0; i < 4; i++)
  s2[i] = s1[?gpu_swizzle(i, j, T, 4)];
for (int i = 0; i < 4; i++)
  s3[i] = __shfl_sync(FULL_MASK, s2[i], ?gpu_swizzle(j, i, 4, T));

Sketching transpose
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Synthesis

for (i in 0..4)
  for j in 0..T)
    assert s3[i][j] == input[j][i]

Imperative sketch

Imperative specification

for (int i = 0; i < 4; i++)
  s1[i] = input[i][j - i % T];
for (int i = 0; i < 4; i++)
  s2[i] = s1[(3 * i + j) % 4];
for (int i = 0; i < 4; i++)
  s3[i] = __shfl_sync(FULL_MASK, s2[i], j + i % T);

Imperative solution



Sketching transpose in Swizzleflow
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Synthesis

memory: [16] = [x0, … x15]
input:  [4, 4] = reshape(input)
s1: [4, 4] = ?gpu_swizzle_row(input)
s2: [4, 4] = ?gpu_swizzle_col(s1)
s3: [4, 4] = ?gpu_swizzle_row(s2)
// specification
goal s3 == [[x0, x4, x8, x12], …]

The holes (like ?gpu_swizzle_row) are sets of gathers with the same type
s1: [4, 4] = swizzle_row(λi, j. j - i % 4)(input)
s2: [4, 4] = swizzle_col(λi, j. 3 * i + j % 4)(s1)
s3: [4, 4] = swizzle_row(λi, j. j + i % 4)(s2)

Swizzleflow sketch

Solution



GPU swizzle template
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?gpu_swizzle sketch defines the search space that contains fanning 
followed by rotation with optional grouping (taken from Swizzle Inventor)
(Swizzleflow selects instructions on HVX

rotation

grouping

co-prime fanning

non-co-prime fanning

fan size

fan size

Synthesis

Figure from Swizzle Inventor (ASPLOS ‘19)



Synthesizing transpose in Swizzleflow
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Synthesis

memory: [16] = [x0, … x15]
input:  [4, 4] = reshape(input)
s1: [4, 4] = ?gpu_swizzle_row(input)
s2: [4, 4] = ?gpu_swizzle_col(s1)
s3: [4, 4] = ?gpu_swizzle_row(s2)
// specification
goal s3 == [[x0, x4, x8, x12], …]

Solve with enumerative search



Non-viable intermediate states
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Viability tests

~1013 paths for 32 by 4 transpose!

Can’t explore them all

How do we detect the non-viable ones?



The reachability property

Each output location’s value must be able to come from a location in the current 
state with that value. 18

Viability tests



Pre-computing reachability

● Find source locations in 
candidate that output 
location can come from

● Check if a location each 
output can come from 
contains needed value

● If any fails, reject state
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Viability tests

Reachability to s3[1, 0] Using s3[1, 0] to reject states



Simultaneously tracking multiple locations

● Tracking one location isn’t  enough
○ Quickly find that every location is a source
○ Causes benchmarks to time out

● “Where can outputs i and j come from together?”
● Two locations is sufficient

○ 99.6% of states skipped on average
○ 45% of benchmarks with solutions prune optimally

● 3+ locations
○ Data is too big (~1M nodes per output triple for 

32x4) — timeout when computing
20

Viability tests



Reachability testing is dataflow analysis

● “Which pairs of locations can the values in this pair of output locations 
have come from?” is a dataflow analysis

● Characteristics
○  Finite (fixed set of locations we track)
○ Distributive (only need to look at one function output to know 

where it can come  from so the analysis distributes over union)
○ Subset (we care about which locations can reach)

● Can be converted to graph reachability[1]
○ Each statement“explodes” into one node per tracked location

21

Viability tests

[1] Reps, T., Horwitz, S., & Sagiv, M. (2003). Precise interprocedural dataflow analysis via graph reachability.. POPL ‘95



Computing reachability

1. For each (set of) functions, compute 
possible dataflow from outputs to inputs

2. Compose resulting statement matrices 
with multiplication

3. This solves reachability problem for all 
output location pairs at once
a. All dataflow graphs have the same 

structure, only the x in “The values in 
x can com from where?” changes

22

Viability tests

Function set to statement matrix



Reachability matrix statistics

● All but two statement matrices for GPUs  have < 5% bits set
○ 82% of them have less than 1% of entries set

● Compositions (row + column swizzles) raise density, still works
● Exploiting sparsity and boolean multiply took 32x5 transpose multiply 

times to 0.08 to 7 seconds each from 120s each (dense floats) 

23

Viability tests



Convolution
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Modeling swizzling kernels

// on W (generally 32) threads
int i = get_thread_id();
float loaded[2] = {x[i], x[W + i]};
float accum = 0;
for (int j = 0; j < K; j++)
  float to_send = loaded[i >= j ? 0 : 1];
  float received = __shfl_sync(FULL_MASK, 
                   to_send, i + j % W);
  accum += received;
out[t] = accum;

Imperative convolution program

Threads load values to registers and 
read from their neighbors

// Spec
for (int i = 0; i < W; i++)
  out[i] = 0
  for (int j = 0; j < K; j++)
    out[i] += x[i + j]



Convolution
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Modeling swizzling kernels

// on W (generally 32) threads
int i = get_thread_id();
float loaded[2] = {x[t], x[W + t]};
float accum = 0;
for (int j = 0; j < K; j++) 
   float to_send = loaded[i >= j ? 0 : 1];
   float received = __shfl_sync(FULL_MASK, to_send, i + j % W);
   accum += received;
out[t] = accum;

Imperative convolution program

x: [34]          = [x0, ... , x34]
// arrays are threads by registers/iteration
// put ⊥ in out-of-bounds locations
loaded:   [32, 2] = load_trunc(x)
to_send:  [32, 3] = select(λi, j. i >= j)(loaded)
received: [32, 3] = swizzle_col(λi, j. i + j % 3)(to_send)
out:      [32]    = fold(+) received

Swizzleflow convolution program

Loop unrolled, arithmetic abstracted



Convolution execution
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Modeling swizzling kernels

x: [5]          = [x1, ... , x5]

loaded: [3, 2]  = load_trunc(x)

to_send: [3, 3]  = select(λi, j.i >= j)(loaded)

received: [3, 3] = swizzle_col(λi, j. i + j % 3)(to_send)

out: [3]         = fold(+) received



Folds

● Represent reductions (+, *, max, …)
● Order of elements doesn’t matter
●   
●
●
● fold{} = 0
● fold*{fold+{a, b}, c}} is (a + b) * c

○ Not equal to fold+{a, b, c}
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Modeling swizzling kernels



Gather and fold are enough

● Fixed-size arrays: kernels have bounded inputs, loops
● No if (x[i] < 0) — simplifies analysis
● No loop-carried dependencies except accumulation
● Limitations

○ No data-dependent indexing → no sparsity (which is hard)
○ No lookup tables (ex. Inverse sqrt() on HVX)
○ HVX: No built-in way to find arithmetic instructions

28

Modeling swizzling kernels



Convolution synthesis
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Synthesis

Problem: We want to see where              can come from, but only have      
   ,    , and    available earlier in the search.
Solution: Ensure each available subterm (pair) reaches the output. For 
analysis, folds put multiple values in a box

x: [34] = [x0, ... , x34]

loaded: [32, 2]   = load_trunc(x)
to_send: [32, 3]  = ?select(loaded)
received: [32, 3] = ?gpu_swizzle_col(to_send)

out: [32] = fold received

// [x0 + x1 + x2, x1 + x2 + x3, …]
goal out == conv{k=3}([x0, ..., x34])



Universes

● Question: Which terms could exist 
in in a given variable?

● Relevant to
○ Folds (this is more precise 

than using symbols)
○ Multiple inputs (see right)

● Each variable gets a universe
● Use subterms in universes of all 

live variables
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Viability tests



Copy counts 

● Comes up in polynomial multiply — 16 keep_if()s, 8 are false
● Detecting extra term copies brings that search from timeout to 3s
● Compute bounds on how often the value in each location appears in 

the whole output. Reject if sum of bounds for locations containing a 
term doesn’t include true count.
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Viability tests

x = ?pick(a, 0)
y = ?pick(a, 0)
z = ?pick(b, 0)
o = x + y + z
assert o == a + b

For the sketch

x = a
y = a
z = ?pick(b, 0)
o = x + y + z
assert o == a + b

the partial program cannot be correct. There 
are too many copies of a. 

The reachability test 
won’t detect this.



Evaluation questions

1. Scalability with the problem size
2. Efficiency of pruning
3. Comparison with Swizzle Inventor

32

Results



Q1: Scalability

● Caching viability data for swizzles between benchmarks is helpful
● Trove is 32 x width transpose
● Searching for all solutions:  determinism & no cost model 33

Results

HVX Gaussian time: 0.6s



Q1; Scalability limits

● Running out of memory
○ 32x11 transpose (each matrix has (32 * 11)4 bits)
○ 15-long 1D convolution
○ 32x15 transposed sum

● Function set creation time (usually negligible)
○ 11x11 2D stencil (needs cond1 : 0 ? cond2 : 1 ? cond2 ? 2 : 3)

● Abstraction limits
○ Width-8 polynomial multiply with shared memory needs an hour

■ Only Swizzle Inventor benchmark we can’t do

34

Results



Q2: Pruning effectiveness
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Results

Benchmark States visited / 
oracle

States visited Search space size

2D stencil (k=5) 1.00 113 4.4e07

2D stencil (k=7) 1.01 4598 1.4e11

Trove, CRC (s=7) 1.01 3534 4.6e11

Trove, RCR (s=7) 2.24 14363 2.2e13

1D convolution (k=3) 1.93 2894 1.9e09

FFM (width=8, registers 27.6 67472 2.6e42

HVX Gaussian instructions 51.3 116111 1.5e15

45% of menchmarks had oracle-like performance



Q2: Effect of abstraction on search
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Results

● Search almost always <1s
● Matrices are cached 

between problems
● Highly effective pruning 

reduces search time
● Boolean matrix multiply



Q3: Speedups over Swizzle Inventor
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Results



Q3: Removing grammar restrictions

● For larger benchmarks, Swizzle Inventor used GPU swizzle subset
● In Swizzleflow, we didn’t need this (ex. could add back grouping)
● Pre-computing pruning faster than ad-hoc SMT discovery

○ Except for CRC Trove with restricted grammar and shmem FFM
● Using sets of functions allowed semantic deduplication of grammar

38

Results



Related work

● Dataflow-based pruning for superoptimization (OOPSLA ‘20)
○ Prunes search for best optimization of LLVM IR
○ Reasons about what bits can/must be set to reject holes
○ Ex. x << C can’t optimize (x + 1) | 1
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Summary

1. Accelerators need swizzles for performance
2. Swizzleflow models swizzling programs on multiple platforms.
3. Swizzleflow allows programmers to synthesize swizzles.
4. New viability tests allow us to prune most of our search space.
5. We are more scalable than previous work because of this.

41



Thank you all for coming! Questions?
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Reachability to s3[1, 0] Using s3[1, 0] to 

reject states



The slide graveyard
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Why synthesis and not a compiler?

● Compilers change a program locally to optimize
● Changing whole data movement isn’t made of optimization steps
● Need search and/or human input

44

Motivation

for (int j = 0; j < T; j++)
  for (int i = 0; i < 4; i++)
    out[j][i] = input[i][j]

int j = get_thread_id(); // T threads in parallel
register float s1[4], s2[4], s3[4];
for (int i = 0; i < 4; i++)
  s1[i] = input[i][j - i % T];
for (int i = 0; i < 4; i++)
  s2[i] = s1[(3 * i + j) % 4];
for (int i = 0; i < 4; i++)
  s3[i] = __shfl_sync(FULL_MASK, s2[i], j + i % T);
return s3;



Why Swizzleflow?

● Other codegen tools don’t focus on swizzles
○ AutoTVM, Lift, etc. work on scheduling - breaking a large problem 

■ Assume optimized kernels
■ Swizzleflow could be integrated here

● Address limitations of other synthesis tools
○ Much work focuses on one platform (SIMD, GPU)
○ Swizzle Inventor (previous work) only targets GPUs and 

significantly limited search space for efficiency
■ We resolve these limitations

45

Motivation

[1] Phitchaya Mangpo Phothilimthana et al.. Swizzle Inventor:Data Movement Synthesis for GPU Kernels. 2019. In ASPLOS.



Accelerator programming is hard
● Accelerators include GPUs, vector processors (HVX, SIMD), FPGAs
● Used for fast math in multiple domains
● To be fast, accelerators constrain programs & offer special features
● Ex. GPUs want memory read in blocks and have inter-thread shuffle 
● Swizzles: irregular mappings of data to memory and compute 

○ Include things like modulo — not just tiling or affine
○ If not made by hand, tools usually only look for affine maps

Overview
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Accelerator constraints: HVX Gaussian

● Many HVX instructions work on odd-even register pairs
● Exploiting this layout gives 2x speedup over Halide

○ Halide inserts a lot of unpacking and repacking
47

Motivation



The Swizzleflow language - partial grammar
Program ::= Statement+
Types are the dimensions of each array
Type ::= ‘[‘ (integer ‘,’)* integer ‘,’? ‘]’
Goals and function definitions omitted
Statement ::= ‘goal’ ‘:’ Type GoalDef | ‘define’ FunctionsDef
          | variable ‘:’ Type ‘=’ Operation
Operation ::= ‘fold’ variable Abstract arithmetic
          A gather, or set of them, with optional arithmetic after
          | ‘fold’? ‘?’? func_name ‘(‘ (variable ‘,’)* variable ‘)’
          | Literal

48

Synthesis



Search

● At each statement, choose value 
for hole

● If current state is viable, search 
next statement

● On non-viable or wrong result, 
backtrack

● Can parallelize independent initial 
segments

● Works well due to viability tests
● Get all results because no cost 

model 49

Synthesis



IFDS - backup

● Interprocedural Flow-Sensitive Dataflow Analylis by Reps[1]
● (We don’t need procedures)
● Can convert dataflow into graph reachability
● Domain of dataflow facts D
● Each program edge has f : 2D → 2D that distributes over union

○ Encodes transitions between facts
● “Explode” program graph to track reachability between dataflow facts

50

Viability

Reps, T., Horwitz, S., & Sagiv, M. (2003). Precise 
interprocedural dataflow analysis via graph 
reachability.



Contents of Swizzleflow arrays
Value ::= Identity 0 |  Not defined ⊥ | Term
Symbol ::= Defined by problem [word not otherwise reserved, ex. x1]
Term ::= Symbol | ‘fold’ ‘{‘ (Term ‘,’)* Term ‘}’

● 0 is the identity
● ⊥ includes out-of-bounds read, but also any term that isn’t a subterm 

of the goal (as an optimization)
● fold{a_1, …, a_k, 0} = fold{a_1, … a_k}
● fold {} = 0
● fold{fold{a, b}, c} is , for example, (a + b) * c and is not fold{a, b, c}

51

Synthesis



Code for sketch
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x: [34] = [x0, ... , x34]

loaded: [32, 2] = load_trunc(x)
to_send: [32, 3] = ?reg_select(loaded)
received: [32, 3] = ?col_swizzle(to_send)

out: [32] = fold
    ?cond_keep{fold_len=3}(received)

goal: [32] conv{k=3}([x0, ..., x34])



The Swizzleflow language
● Portable model of swizzling 

kernels as mapping between 
arrays

● Focuses on data movement
● Threads, loops, etc. unrelled to 

array dimensions
● Arithmetic → folds
● Restrictions come from domain 

— make reasoning easier

53

Modeling swizzling kernels



Synthesis problem

54

Synthesis

All gathers in 
each hole have 
the same type



Viability tests

● Approximate which executions can be correct
● Use this to prove states can’t be part of a correct program
● Main test uses a dataflow analysis to reject unworkable candidates
● Notation: v i is the variable that holds v[i]

55

Viability



IFDS
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Viability

Reps, T., Horwitz, S., & Sagiv, M. (2003). Precise 
interprocedural dataflow analysis via graph 
reachability.

● Convert dataflow analysis to graph 
reachability

● We don’t need interprocedural
● “Explode” graph to reachability 

between dataflow facts
● Functions distribute over 

union/branches

Maybe-uninitialized variables example for IFDS



Dataflow in Swizzleflow

● We have a family of dataflow problems
● Effectively like a taint analysis
● Reaches_{g i} - at each statement, the set of v j such that the value in 

v  j can be placed in g i where g is the program output/goal
● Works backwards from the goal
● Can compute by looking at each other, taking unions, composing
● Reality: we need Reaches_{g i, g j} for pairs of locations

○ Tracking one location means rotations can do anything
● Also abstracts folds  — multiple values reach one output
● TODO: draw this

57

Viability



The pair-reachability test

● Each (pair of) locations in the goal must be reachable by correct 
terms, or candidate must be wrong

● For each a, b in universe(stmt)2 and each g i, g j such that a ∈ g[i] and 
b ∈ g[j]
○ Must have v l, w m in Reaches_{g i, g j}(stmt) so v[l] = a, w[m] = b 

58

Viability



Universes

● Which terms to test?
● Ex. goal has a + b, but only have a and b
● Or - literal for constants not run yet
● Solution: each variable (and statement, through union over live vars) 

gets a universe of potential terms
● How?

○ Literal: all terms in the literal that are subterms of the goal
○ Gather: union of universes of arguments
○ Fold: all combinations of universe of argument that are in goal

● TODO: add example/draw one/clean up these bullet points
59

Viability



The global graph

● Exploited graphs for each Reaches_(g i, g j) are the same except for 
their starting node

● Also have nice layers - one for each statement in the program
● So, compute each layer, then compute all-source, all-target 

reachability with matrix multiply
● Fast and cacheable - key to our efficiency
● TODO: I could’ve sworn I had a good picture of this 

60

Viability



Copy count test

● Problem with pair-reachability: can’t catch extra copies of values
○ Ex. conditions on add should’ve made something 0 but didn’t

● Working backwards, compute lower and upper bounds on how many 
times the value of v i can be in the output
○ For gathers: bounds on inputs are sums of bounds or outputs that 

read from there - min/max over set of functions
○ For folds: Each input collected is copied as many times as output

● To test: for each a in universe(stmt),, sum up min/max bounds on 
each v i equal to a, make sure actual number of as needed is in 
bounds

● TODO: too late at night to make it a good picture 61

Viability



Abstract execution?

● Too slow — can’t get enough to be useful, even with caching
● Adjusting coarseness of abstraction didn’t help
● But … 62

Viability tests

One idea: only 
track a subset 
of locations, 
see if the 
terms there 
can go where 
they’re needed



Choice of abstractions

● With one-location reachability, benchmarks time out
● Three-location data does not fit in RAM for larger benchmarks
● Copy count is necessary

○ Without it, large polynomial multiply benchmark goes from 3 
seconds to timeout

● Note from audience: move this up

63

Results



Q2: Abstraction effectiveness

● In many cases, close to optimal pruning
● Deviations

○ Combining multiple inputs  (polynomial, weights in convolution)
○ HVX — later instructions could fix mistakes (abstractly)

64

Results


