
Swizzleflow: Synthesis of Irregular Data Mappings in Accelerator

Kernels Using Novel Pruning Abstractions

Krzysztof Drewniak

November 20, 2020

Abstract

Hardware accelerators, such as GPUs and vector co-
processors (for example, Qualcomm’s HVX), are key
tools for obtaining high performance for mathemat-
ical operations that underpin the fast execution of
tasks in fields from machine learning to scientific
modeling. One reason creating programs that take
full advantage of these accelerators is difficult is that
they often require complex data access and move-
ment patterns, or swizzles, that existing state-of-the-
art compilers cannot discover and whose manual cre-
ation by experts is labor-intensive. Therefore, we
have developed Swizzleflow, a system that provides a
portable model of these swizzling kernels across differ-
ent accelerators and allows programmers to synthe-
size such kernels from a sketch. To make this synthe-
sis process suitable for a wider range of problems, we
have developed viability tests based on dataflow anal-
ysis that allow us to prune away, on average, 99.6%
of the search space across benchmarks from multiple
domains and platforms. This improved search algo-
rithm, which was used to synthesize kernels for both
GPUs and the HVX processor, has also allowed us
to obtain significant speedups in synthesis time over
our previous work, Swizzle Inventor, especially when
using a less restrictive search space.

1 Introduction

Hardware accelerators, such as GPUs and vector co-
processors (for example, Qualcomm’s HVX), are key
tools for obtaining high performance for mathemat-
ical operations that underpin the fast execution of
tasks in fields from machine learning to scientific
modeling [1]. These accelerators offer substantially
higher performance on operations such as matrix mul-
tiplication and convolution compared to traditional
CPUs.

These speedups do not come for free, however,
since accelerators impose constraints on programs so
they can execute certain classes of computations more

effectively when programmed correctly. For exam-
ple, on GPUs, a group of threads, or warp, obtains
significantly higher performance when each thread
loads data from the same cache block. Meeting this
constraint causes the algorithm for matrix transpose
shown in Listing 1 to be 45x faster than a naive imple-
mentation that loads an array from memory directly
in transposed order (which would violate this coalesc-
ing load requirement). Similarly, failure to distribute
traffic across the many parallel memory banks seen
on many accelerators can cause unnecessary compu-
tation stalls.

Meeting these constraints often requires program-
mers to use swizzles — irregular mappings of data to
memories or compute elements that are frequently
non-affine. These swizzles are frequently written
by hand, since neither compilers nor existing accel-
erator code generation tools such as AutoTVM [6]
or Lift [18] explore the full space of swizzle ex-
pressions used in practice. Swizzles exist in high-
performance code on various platforms. They con-
tribute to the superior performance cuBLAS has
over typical framework-generated matrix multiplica-
tion code [9], and the developers of the HVX pro-
cessor published many swizzling programs, such as
various image filters, to demonstrate how to use their
platform effectively [10]. We have shown examples of
these swizzles in the transposition code in Listing 1
(illustrated in Figure 1) and the convolution code in
Listing 3 (as shown in Figure 2).

We have developed Swizzleflow to help developers
create these swizzling programs. Swizzleflow allows
programmers to model the core data movement seen
in swizzle-based programs for dense mathematical op-
erations by abstracting away the details of the target
hardware into a functional language that focuses on
the core of the problem: specifying data movement
through mappings between multidimensional arrays
that represent time and space dimensions in the al-
gorithm, as shown in Figures 1 and 2.

Using Swizzleflow, we have expressed and synthe-
sized programs that use human-created (or previously

1

synthesized) irregular mappings which compilers were
not able to generate. These include a Gaussian filter
written by HVX developers as an example of how
to use their platform effectively [10], the transposi-
tion code in Listing 1 (which we show our model of
in Listing 2) and optimized convolutions and stencils
for GPUs (Listing 3, modelled by Listing 4).

Swizzleflow not only enabled us to model these pro-
grams, but also to synthesize them. Swizzleflow ab-
stracts away complexities such as imperative assign-
ment and loops, enabling easier analysis. This ab-
straction let us develop a highly effective enumera-
tive synthesis algorithm that uses novel abstractions
to prune almost all partial programs that cannot be
completed to create a solution, bypassing, on aver-
age, 99.6% of the search space. Our algorithm can
generate solutions to many problems in seconds or,
at most, under two minutes, which gave us orders
of magnitude of speedup compared to Swizzle Inven-
tor, the main previous work on this swizzle synthesis
problem [14].

The remainder of this paper is structured as fol-
lows:

• In Section 2, we will describe the Swizzleflow
language, taking transposition and convolution
on GPUs as our main examples. This high-level
model allows us to describe swizzling programs
from multiple platforms and allows us to perform
effective viability testing.

• In Section 3, we will describe our synthesis algo-
rithm and the viability tests underlying it using
transposition on GPUs as an illustrative exam-
ple and discuss how we compute these tests effi-
ciently.

• Section 4 will explain how our viability tests can
be extended to handle more complex program
sketches that include reductions (such as convo-
lution) or multiple input arguments.

• Finally, Section 5 will present our empirical eval-
uation, showing how effective our viability tests
were at pruning the search space (99.6% of the
possible paths were pruned, and 45% of the
benchmarks pruned optimally) and the speedups
this produced over previous work.

2 The Swizzleflow language

The Swizzleflow language allows us to model swiz-
zling computations at a high level that abstracts away
details of the hardware, such as imperative loops or

〈program〉 ::= (〈statement〉 | 〈function-def 〉)*

〈statement〉 ::= 〈ident〉 ’:’ 〈shape〉 ’=’ 〈expr〉

〈shape〉 ::= ’[’ 〈integer〉+ ’]’

〈expr〉 ::= ’fold’ [〈op-description〉] 〈ident〉
| 〈func-name〉 ’(’ 〈ident〉+ ’)’
| 〈literal〉

Figure 3: The grammar for the Swizzleflow language.
Note that the structure of custom function definitions
and literals has been omitted for brevity.

the fact that code is running on multiple threads.
This is demonstrated in Listing 2, which is the Swiz-
zleflow model of the GPU transpose code in List-
ing 1. Unlike the GPU-specific code, the Swizzle-
flow implementation is written in a functional style
that represents various operations, such as loads from
memory or inter-thread communication as transfor-
mations between arrays whose dimensions correspond
to aspects of how the program’s execution vary in
time and space (such as the value of variables are ex-
ecuted on different threads or during different loop
iterations). The execution of this program is visual-
ized in Figure 1.

Swizzleflow is suitable for more than just data
movement code like transpose. The code in Listing 4,
which is our model of the convolution implementa-
tion from Listing 3, shows that we can model typical
mathematical operations by unrolling loops and using
the fold operator to model the additions the original
loop performs, as illustrated in Figure 2.

Swizzleflow is a functional, single-static assignment
language whose core grammar is given in Figure 3
The variables in a Swizzleflow program are all multi-
dimensional arrays with a fixed shape or type, such
as [4, 2] for a 4 × 2 array. During synthesis, these
arrays mainly contain terms, which are either arbi-
trary symbols given by the specification or multisets
of terms, though they can also contain the special val-
ues 0 (a general identity) and ⊥ (an undefined value).

Gathers Swizzleflow’s semantics are built from two
types of operators: gathers and fold. Aside from the
special-purpose reduction operator fold, all Swizzle-
flow functions are taken from the set of gathers: func-
tions between arrays that cannot depend on the val-
ues of their arguments. Each array location in the
output of a gather is defined to be loaded from some
location in an argument or to be one of the special

2

int j = get_thread_id();

register float s1[4], s2[4], s3[4];

for (int i = 0; i < 4; i++)

s1[i] = input[i][j - i % T];

for (int i = 0; i < 4; i++)

s2[i] = s1[(3 * i + j) % 4];

for (int i = 0; i < 4; i++)

s3[i] = shfl sync(FULL_MASK,

s2[i], j + i % T);

return s3;

Listing 1: An optimized implementation of matrix
transpose for a T × 4 matrix on GPUs whose mem-
ory accesses provide increased performance. This is
a variation on the Trove algorithm [5] that uses fewer
in-register promotions.Three loops are required be-
cause shfl sync, used for inter-thread commu-
nication, requires all threads to broadcast the same
variable when reading from their neighbors.

0 1 2 3
4 5 67
11 8 910

1213 14 15

0
1

2
3

4
5

6
7 11

8
9

10

12
13

14
15

0
1
2
3

4
5
6
7 11

8
9
10

12
13
14
15

0 1 2 3
4 5 6 7

118 9 10
12 13 14 15

input

s1

s2

s3

Figure 1: An illustration of our model of optimized
GPU transpose, corresponding to the Swizzleflow
code in Listing 2

memory: [16] = [x0, ... x15]

input: [4, 4] = reshape(memory)

s1: [4, 4] = swizzle row(\i, j. j - i % 4)(input)

s2: [4, 4] = swizzle col(\i, j. 3i + j % 4)(s1)

s3: [4, 4] = swizzle row(\i, j. j + i % 4)(s2)

Listing 2: A model of the transpose algorithm from Listing 1, where the parallelism in the original code is
modelled with an additional array dimension. This code is written assuming 4 parallel threads, instead of
the real value of 32, to make illustrating its execution more feasible.

int i = get_thread_id();

float loaded[2] = {x[i], x[W + i]};
float accum = 0;

for (int j = 0; j < K; j++)

float to_send = loaded[i >= j ? 0 : 1];

float received = shfl_sync(FULL MASK,

to_send, i + j % W);

accum += received;

out[t] = accum;

Listing 3: An optimized implementation of a width-K
1D convolution for GPUs, which uses two coalescing
loads in order to load the input array onto W threads
and then uses a pair of swizzles to coordinate passing
the loaded values between threads in order to com-
pute the desired result.

3+

1
2
3
4
5

x

t
h
r
e
a
d

3
2
1 4

5
⊥

loaded

r0 r1

1
2 2
3 3 3

5
4 4

to_send

i=0 i=1 i=2

1
2

2

3
3

3

54
4 received

i=0 i=1 i=2

1+
2+

2+
3+

3

54+
4 out

+

Figure 2: Illustration of our model of GPU kernel
execution from Listing 4

3

x: [34] = [x0, ... , x34]

loaded: [32, 2] = load trunc(x)

to send: [32, 3] = select(\i, j. i >= j)(loaded)

received: [32, 3] = swizzle col(\i, j. i + j % 3)(to send)

out: [32] = fold(+) received

Listing 4: A Swizzleflow model of the GPU convolution from Listing 3, executed on 32 threads with a filter
width K = 3. The usage of the accum variable in the native code is represented by the fold operator that
produces out

values 0 or ⊥. For example, the function that defines
s3 in Listing 2 and Figure 1 can be written as the
gather f(a)[i, j] = a[i, i+ j mod 4].

Gathers generalize permutations and can express
operations such as loading data from memory, com-
munication between threads, and many conditional
statements (such as the question of in which itera-
tions a value should be accumulated). The lack of
value dependencies simplifies symbolic execution and
analysis, and is justified since such expressions do not
occur in most swizzling kernels.

In Swizzleflow, we restrict our variables (and thus
function inputs and outputs) to having constant,
bounded shapes. This means that Swizzleflow cannot
reason about unbounded computations, which simpli-
fies our analyses by making the set of locations within
arrays that we need to track information about fi-
nite and easy to enumerate. This restriction does not
have much impact on the usability of our model for
swizzling kernels, since the program sections that are
usually hand-optimized compute fixed-size subparts
of larger problems.

Reductions and fold Many swizzling programs,
such as convolutions and other stencils, ultimately
combine their inputs using associative and commu-
tative operators such as addition, multiplication, or
max. Such reductions are also the only loop-carried
dependencies seen in most swizzling kernels, which
enables us to unroll loops into array dimensions, use
gathers to describe the relationships between vari-
ables in the loop body, and then represent the only
inter-iteration dependencies (reductions) with a spe-
cial operator. To represent these reductions, the
Swizzleflow languages includes the fold operator in
addition to gathers, which packs the last dimension
of an array into multisets, like so

fold

([
a a
d c

])
=

[
fold{a, a}
fold{c, d}

]
For clarity, folds are usually annotated with the op-
eration they are performing, so that, for example,
fold+{a, b} can instead be written as a+b. Folds also

have the following semantic equivalences that allow 0
to be the identity element:

fold{a1, a2, . . . ak, 0} = fold{a1, a2 . . . ak}
fold{} = 0

In all cases, nested folds are held to represent
different arithmetic operations. The expression
fold×{fold+{a, b}, c} represents c(a+b), and, with the
annotations removed, it is fold{fold{a, b}, c}. This
means that folds cannot be merged in Swizzleflow,
and so that fold+{fold+{a, b}, c} 6= fold+{a, b, c} (be-
cause nested folds might represent different opera-
tions). This illustrates one limitation of our model:
we cannot synthesize the precise manner in which a
reduction is performed, such as by choosing between
arithmetic instructions on the HVX processor.

We found that we can use our model to synthesize
algorithms takes from multiple domains, including
image processing, graphics, and cryptography, tar-
geting both GPUs and Qualcomm’s HVX processor.
However, our model does not support data-dependent
indexing or other indirection commonly seen in sparse
kernels because the problem of synthesizing such code
is difficult and outside the scope of this work. We also
do not perform bit-accurate reasoning that would al-
low us to validate operators such as a fast inverse
square root, whose correctness relies on the precise
semantics of numerical operators. Despite these limi-
tations on our scope (and our restriction to fixed-size
subproblems), we have still developed a useful model
for many swizzling programs.

3 Swizzleflow synthesis for
transpose

Now that we have defined a model of dense swizzling
programs, we can use it to perform program synthe-
sis, allowing programmers to prototype their swiz-
zling code. To illustrate our synthesis problem ini-
tially, we will use the GPU transposition code shown
in Listings 1 and 2 (and illustrated in Figure 1). Since

4

for (int i = 0; i < 4; i++)

s1[i] = input[i][?gpu swizzle(j, i, T, 4];

for (int i = 0; i < 4; i++)

s2[i] = s1[?gpu swizzle(i, j, 4, T)];

for (int i = 0; i < 4; i++)

s3[i] = shfl sync(FULL_MASK,

s2[i], ?gpu swizzle(j, i, T, 4));

Listing 5: The main body of the sketch needed to
synthesize the GPU transpose from Listing 1.

it does not feature reductions, this example will allow
us demonstrate the core of how we make enumera-
tive search viable for swizzle synthesis while deferring
some details for Section 4.

One way to synthesize parts code like the fast
transpose seen in Listing 1 would be to sketch the
swizzling expressions by replacing them with holes
like ?gpu swizzle(i, j, 4, T), as shown in List-
ing 5 and using a solver to instantiate the holes with
expressions (which are functions of relevant variables
and their bounds) so that the resulting code com-
putes a transpose, that is, for all i and j, s3[i][j] =
input[j][i]. This approach, used by Swizzle Inven-
tor [14], the main previous work on swizzle synthesis,
has difficulties scaling with the size of the program
inputs and outputs and the complexity of the expres-
sion grammar due to limitations on how effectively
SMT solvers can discover invariants about this search
space.

Using Swizzleflow, however, the problem is phrased
differently. The specification (or goal) of our synthe-
sis problem is an assertion about the final output of
a program being equal to some array of terms. The
sketch is a program where the holes are sets of gath-
ers of the same type, and the synthesis problem is to
choose one gather from each set so that the program
as a whole satisfies the specification. An example of
such a synthesis problem can be found in Listing 6.
While such a problem can be solved by many tech-
niques, such as machine-learning guided search, we
have found that a simple enumerative search, pruned
by our viability tests, is sufficient to obtain scaleable
synthesis performance.

Our search procedure is given in Algorithm 1

One of the main ways in which we made our syn-
thesis effective was the pair-reachability test, or sim-
ply reachability test, which uses dataflow analysis to
discover partial programs that cannot be completed
to solve the synthesis problem. At a high level (as
shown in Figure 4 for one term), when a candidate
intermediate state is computed, this test allows us to
check if each pair of terms in the output can be found

memory: [16] = [x0, ... x15]

input: [4, 4] = reshape(memory)

s1: [4, 4] = ?gpu swizzle row(input)

s2: [4, 4] = ?gpu swizzle col(s1)

s3: [4, 4] = ?gpu swizzle row(s2)

goal s3 == [[x0, x4, x8, x12], . . .]

Listing 6: The synthesis problem for GPU transpose
modelled in Swizzleflow, whole solution is in List-
ing 2. The specification has been shortened for clar-
ity. Each ?hole represents a set of functions for the
synthesizer much choose from to satisfy the specified
goal.

in locations within that candidate those terms could
come from (given the remaining swizzles). This test
allowed us to, on average, avoid 99.56% of the paths
in our search space and caused 45% of our bench-
marks to explore the search tree as if they had an
oracle that indicated if a partially-synthesized candi-
date was a partial solution.

3.1 Reachability for scalars in SSA
programs

To simplify the discussion of this viability test, we
will first present the core dataflow analysis for scalar
program synthesis tasks in single static assignment
(SSA) form. Because all Swizzleflow arrays have
statically-known sizes, we can initially generalize
from this scalar case by noting that each location in
an array, that is, the variable vi where array element
v[i] is held, is a scalar.

Consider the partially-synthesized program in List-
ing 7. The assertions in this program will fail because
there is no way for the value of d to come from c,
the only variable that has the value 2. We can prove
that (partial) programs where variables can only take
their values from other variables or constants can-
not be correct in two steps: first by computing which
variables the output of interested can come from, and
then by checking if any of those variables contains the
desired value. (The applicability of this type of anal-
ysis to Swizzleflow is discussed in the next subsection
and shown in Figure 4).

In general, suppose we want to prove the assertion
F [g] = c (for some goal variable g and constant c)
cannot be true for any final state F of a program
that follows from executing statement s to produce a
candidate state σ. The method we use for this bears
some similarity to those used in taint analysis. We
begin by defining Rg(s), the set of variables v such
that executing every statement after s could cause

5

Algorithm 1 Swizzleflow search procedure

function search(s, σ, g, c)
Require: s is a statement, σ is a program state (map of variables to values), g is the goal variable, and c

is the value g must have have in a correct program
for all choices ŝ for how to execute s do . Statements with no hole have one available choice so ŝ = s

σ′ ← ŝ(σ)
if σ′[g] = c then succeed
else if g ∈ σ′ then fail . Fail if the goal has a different value than expected
else if viable pairs(s, σ′, g, c) ∧ viable copy count(s, σ′, g, c) then . Viability tests,

presented in Algorithms 3 and 4
search(succ(s), σ′, g, c)

else continue
end if

end for
end function

a = 0 // R d(a) = {a, b}, U(a) = {0}
b = 1 // R d(b) = {a, b}, U(b) = {0, 1}
c = 2 // R d(c) = {a, b}, U(c) = {0, 1, 2}
d = ?choose(a, b) // R d(d) = {d}, U(d) = {0, 1, 2}
assert d == 2

Listing 7: An SSA program, annotated with the analyses we perform. Rd(s) is the set of variables the value
of d can come from when the program starting after the statement s is executed, and U(s), the universe of
s, is the set of constants that appear at or before s. ?choose is an unmade choice of which variable to read
from in the synthesis, and statements are named after the variable they define.

F [v] = F [g], irrespective of the earlier state of the
program. To solve this problem, we observe that, at
the definition of g, only the variable of g can reach g,
so Rg(g) = {g}.

Additionally, to ensure we do not reject valid pro-
grams simply because we have not executed a state-
ment that defines a constant yet (as we would if we
tested the viability of Listing 7 before defining c), we
must also define the universe U of each statement to
be the set of constants that have appeared in state-
ments at or before s, starting with U(〈init〉) = {}.

Then, as we work through the program (from the
back for the reachability analysis and from the front
for the universe one), whose statements have the gen-
eral form

v = choose(a1, . . . ak, c1, . . . cl)

, where the aI are variables and ci are constants, we
define

Rg(pred(v)) ={
(Rg(v) ∪ {a1, . . . ak})− {v} v ∈ Rg(v)

Rg(v) otherwise

U(v) = U(pred(v)) ∪ {c1, . . . , cl}

(1)

where pred(v) is the statement before the one that
defines v. Note that, when we encounter the state-
ment that defines a variable the goal can come from,
we replace that variable with its arguments. This
means that Rg(s) is always a subset of the variables
that are live at s (using a variable adds it to the set
and defining it removes it).

With this information, we can prune an enumer-
ative search as shown in Algorithm 21 For exam-
ple, we can prune the partial program in Listing 7
by noting that, after executing statement c, we have
σc = {a 7→ 0, b 7→ 1, c 7→ 2} and Rd(c) = {a, b}, but
none of the variables that reach d (a or b) are equal to
2, which means the program cannot be correct. We
could not invalidate the program at statements a or
b, since no 2 had been encountered yet.

When generalized to Swizzleflow, this reachability
analysis allows us to detect mistakes during synthesis,
such as missing terms or terms that are in the wrong
part of the array.

The reachability problem we defined has several
useful properties: the solution at each statement is

1This algorithm’s soundness relies on constants only ap-
pearing once within a program, but this condition can be im-
posed by rewriting subsequent appearances to variable refer-
ences, like by rewriting a = 1; b = 1 to a = 1; b = a

6

Algorithm 2 Viability test based on reachability for scalar variables

function viable scalar(s, σ, assertions)
Require: σ is a state produced by executing some branch/choice of the statement s

for all assertions g = c do
if c ∈ U(s) and there is no v ∈ Rg(s) such that σ[v] = c then

return false
end if
return true

end for
end function

a subset of a finite set (the set of program variables
V) and the inference rules for the dataflow analysis
(Equation 1) distribute over union. These properties,
shared by many dataflow analysis problems that can
be expressed as tracking a bit-vector (of one bit per
variable) will allow us to express the solution to prob-
lem as graph reachability using the IFDS framework
developed by Reps [15]. To summarize the relevant
part of the IFDS result, we can define a graph with
nodes (s, v) for each statement s and variable V , and
adding the edge (s, v) → (pred(s), v′) if v ∈ Rg(s)
implies v′ ∈ Rg(pred(s)). Then, the solution to our
dataflow problem is the set of nodes reachable from
(g, g) (the node representing the variable g at the
statement g, which defines it) in this exploded graph.

The universe analysis is not a dataflow problem,
but can be easily computed from the program. In
addition to preventing certain classes of unsoundness
in the case of multiple constants (or, in Swizzleflow’s
case, input arguments) it also allows us to use a defi-
nition of Rg(s) only includes variables that are live at
s. This reduces the amount of storage space needed
to track this reachability data significantly.

3.2 Reachability analysis in Swizzle-
flow

The algorithm presented above can be applied to
Swizzleflow programs, as illustrated in Figure 4. Re-
turning to our transpose synthesis example, part of
our specification asserts that s3[1, 0] = x1. If we treat
the array location s3[1, 0] as the variable s31,0, our
reachability analysis shows that, because s3 produced
by swizzling within the rows of s2,

Rs31,0(s2) = {s21,0, s21,1, s21,2, s21,3}

as shown in Figure 4. This then allows us to conclude
that when none of the s21,j in a candidate value of s2
is equal to x1, like in the state on the left of Figure 4,
cannot be correct.

In general, we can convert the assertion g = a for
some array a to the set of assertions {g0 = a[0], g1 =

✓

0

2
3

4

6
7 11

8

10

12

14
15

1 5 913

0

2
3

4
5
6
7 11

8
9

10

12
13
14
15

1

s2

s3

0

2 3
47
11

8

10
1215

1
5

9
13 614

can't
come
from

can
come
from

✓ ✓ ✓ ✓

can only
come from

choices are
row swizzles

Figure 4: An illustration of how reachability infor-
mation, in this case to the location s31,0 can be used
to reject incorrect program states. s3 is produced by
applying row swizzles to s2, which means that the
value in s31,0 can only come from the locations s21,i

for each i. The colored, numbered boxes represent
symbolic constants xi

7

Row swizzles

Column swizzles

s2

s1

s3

✓ ✓ ✓ ✓

✓

✓ ✓ ✓ ✓
✓ ✓ ✓ ✓
✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

Figure 5: A demonstration of the fact that, because
s3 comes from swizzles of the rows of s2 (that in-
clude rotations) and s2 is produced by swizzling s1’s
columns, the value from any location in a value of s1
encountered while synthesizing Listing 6 can reach
s31,0.

a[1], . . .} and then use our analysis of Rgi for each
index i to prune our search during synthesis with ap-
propriate invocations of viable scalar. This ap-
proach has one major problem, however, which is il-
lustrated in Figure 5: tracking reachability to one lo-
cation does not provide a specific enough abstraction
to produce meaningful pruning. In practice, when we
set our code to use reachability to one location, all of
our benchmarks timed out.

To resolve this precision problem, we track which
pairs of locations can reach which pairs of locations in
a target array g, creating the pair-reachability prob-
lem Rgi,gj . Our ability to define this problem rests
on the one key difference between Swizzleflow pro-
grams and the scalar ones we considered earlier: the
execution cannot mix and match behaviors from dif-
ferent gathers for different variables. That is, if the
statement defining a variable x′ from x = [1, 2] using
uses the two functions

f([a, b]) = [a, b]

g([a, b]) = [b, a]

(which are the functions used in Figure 6) the value
x′ = [1, 1] could not be constructed. However, if we

0 1

0 1

0 1

0 1

or

✓0, 0

0, 1 1, 0 1, 1

0, 1

1, 0

1, 1

to loc. pair

from
loc.
pair

0, 0

✓ ✓
✓

✓ ✓
✓ ✓

Figure 6: Construction of a statement matrix for the
set of functions f([a, b]) = [a, b] and g([a, b]) = [b, a],
showing which pairs of output locations can come
from which pair of input locations.

had the abstracted assignment statements

x′[0] = ?choose(x[0], x[1])

x′[1] = ?choose(x[0], x[1])

which the expansion of f and g into scalar opera-
tions per our initial approach would imply, x′ = [1, 1]
would be a valid outcome.

Instead of using this abstraction, we track reacha-
bility between pairs, as demonstrated in Figure 6 for
the above example. Tracking the behavior of pairs of
outputs does not eliminate this mix-and-match preci-
sion problem, but it reduces its presence enough that
pruning becomes useful.

Algorithm 3 gives our main viability test, which
uses this pair-reachability to check if state σ (arising
from executing statement s) can lead to satisfying the
assertion g = c

3.3 Computing pair reachability

To compute this reachability data, we first create a
statement matrix for each statement in the sketch, as
shown in Figure 6. This matrix records where each
pair of locations in every live variable after a state-
ment executes can come from in the variables live be-
fore that statement. This construction is analogous
to the one used for single-variable reachability.

We can then multiply these matrices together,
starting from the statement matrix for the final pro-
gram output (which encodes that (gi, gj) can come

8

Algorithm 3 Viability test for the assertion g = c based on reachability between pairs of locations

function viable pairs(s, σ, g, c)
for all (a, b) ∈ U(s)2 do

for all i, j such that c[i] = a and c[j] = b do
if there are no (l1, l2) in Rgi,gj (s) such that σ[l1] = a and σ[l2] = b then

return false
end if

end for
end for
return true

end function

from (gi, gj) for all i and j) in order to create the
reachability matrix for each statement s. Each vi-
ability matrix contains the solutions to the graph
reachability problems arising from Rgi,gj (s), since
each statement matrix is the adjacency matrix for
a layer of nodes in the exploded graph for all of those
problems. The statement matrices can be used for
all of the Rgi,gj dataflow problems because Swizzle-
flow’s restriction to gathers means that the structure
of the exploded graph corresponding to the problem
remains the same no matter which pair of output lo-
cations we are computing information about — only
the start node of the graph changes.

In addition to allowing us to compute all the reach-
ability data needed for viability pairs at once, this
statement matrix approach has several implementa-
tion benefits. One is that, since multiple different
programs may use the same set of gathers (especially
if they are a set that was built in to Swizzleflow), the
statement matrix for those functions can be cached,
allowing Swizzleflow to avoid a potentially expensive
recomputaiton. More interestingly, these statement
matrices, in addition to being Boolean-valued, are
typically quite sparse: for our GPU benchmarks, only
two of them had more than 5% of their bits set, while
82% had a density less than 1%. While the resulting
chained products did not share this low density (swiz-
zling within rows composed with swizzling within
columns continues to greatly increase the amount of
available data movement options in the sketch, even if
the complete loss of precision in Figure 5 is avoided),
Boolean matrix multiply with one sparse input can
be implemented much more efficiently than a general-
purpose matrix multiplication. Using matrix multi-
ply algorithms adapted from O’Neil [12], we reduced
the multiplication times for computing each viabil-
ity matrix needed for synthesizing a 32× 5 transpose
(which had dimensions 25600 × 25600) to between
0.08 seconds and 7 seconds from the 120 seconds each
needed using a general floating-point matrix multipli-

cation implementation.

The dimensions of the matrices mentioned above
also indicate why we do not use triples of locations or
even larger pairs to obtain more precision. While (32·
5)2

2 ≈ 229 Boolean matrix entries per multiplication

output can be managed, (32 · 5)3
2 ≈ 243 Booleans,

even if they can be stared in a sparse format, is not
a matrix product that can be computed in a time
feasible for program synthesis. We did not elect to
explore augmenting our test with selective refinement
strategies, like those used by Wang et al. [21] and Guo
et al. [8] because it had proved highly effective as is.

4 Viability testing with arith-
metic

The pair reachability test developed in Section 3 can
be extended to account for the fold operator present
in Swizzleflow. The first problem in this extension
can be seen in the problem of synthesizing the Swiz-
zleflow convolution from Listing 4 using the sketch
and specification shown in Listing 8. The specifi-
cation for this problem is, as shown in Figure 2,
[x0 +x1 +x2, x1 +x2 +x3, . . .]. However, earlier vari-
ables, such as received, only contain terms like x1,
x2, or x3. Applying the viable pairs procedure as
written would cause us to prune valid programs be-
cause, for example, x1 +x2 +x3 is not present in any
term in received.

Our solution to this problem, illustrated in Fig-
ure 7, is to modify viable pairs to instead inves-
tigate where subterms of a location in the goal can
come from. That is, we take all the term equality
tests and replace them with v ∈∗ l (or, “v is a sub-
term of l in σ”). For example, in the loop over the i
and j such that that g[i] = a and g[j] = b , we instead
want the i and j to satisfy a ∈∗ g[i] and b ∈∗ g[j].

To accompany this extension of the viability test,
we define the abstract behavior of a fold to put mul-

9

x: [34] = [x0, ... , x34] // U(x) = {x 0, x 1, . . . x 34}
loaded: [32, 2] = load trunc(x)

to send: [32, 3] = ?select(loaded)

received: [32, 3] = ?gpu swizzle col(to send)

out: [32] = fold(+) received // U(out) = {x 0 + x 1 + x 2, . . .}
goal out == fold(+) [[x0, x1, x2], [x1, x2, x3], ...]

Listing 8: A synthesis problem for the GPU convolution from Listing 3, whose Swizzleflow model (one of
the solutions to this problem) is in Listing 4 and which is illustrated in Figure 2. Note that the specification
includes compound terms like x0 + x1 + x2, complicating the viability testing process.

✓ ✓ ✓
received

out
3+

1+
2+

2+
3+

3

54+
4

2
3

3
54
4

1 2
3

3
54

✓

2 32 3 4 1

can only
come from

can't
come
from

can
come
from

fold(+)

Figure 7: Left: A depiction of how the fold operator
is abstracted for pruning analysis based on the sketch
in Listing 8. Right: How this abstracted fold can be
used to prune a state on account of how subterms of a
desired output are not in places they can come from.

tiple values in a box as shown in Figure 7.. That is,
if we have v = foldw as a program statement, then
the resulting statement matrix is built from pairs of
edges of the form v[i]← w[i, k] for all relevant k. For
example, in the convolution sketch, we define edges
indicating that that out0 can come from received0,0,
received0,1, or received0,2. This does mean that, be-
fore any reductions are executed during our search,
our abstraction treats both ad + bc and ab + cd as
{a, b, c, d}, which reduces the effectiveness of prun-
ing.

One additional change we need to make to our via-
bility test is the definition of U(s), the universe at s.
In the scalar and arithmetic-free cases, we could de-
fine U(s) to be the set of constants that had appeared
at or before s. To obtain more precise pruning (for
example, the ability to notice that the term x1w1 was
not constructed when multiplying data with weights
during a convolution), we extend our definition and
have U(s) be the set of terms that can appear within
a variable that is live at s which are subterms of the

Figure 8: The computation of universes for each vari-
able in a two-argument convolution

goal.
Defining this set begins by defining Uv, the universe

of every variable v as follows:

• If v = [c1, c2, . . . ck] or some other literal, then
Uv = {c1, c2, . . . , ck}

• If v = f(a1, a2, . . . , ak) for some gather or set
of gathers f , Uv =

⋃
i Uai , which reflects that

a gather can read from anywhere in any of its
arguments.

• If v = foldw, then Uv is the set of all
{t1, t2, . . . tk} that are subterms of the specifi-
cation such that each ti ∈ Uw. In other words,
the result of a fold can include all the ways to
combine together the terms that might be in the
input which appear in the specification.

A concrete example of these computations for a con-
volution that takes an array of weights as a second
parameter is shown in Figure 8.

One caveat to this universe analysis is that it can
still lead to correct programs being rejected in the

10

case where multiple independent literals use the same
constants. For example, having the program

x = [a, b];

y = f(x);

z = [a, c];

. . .

could lead to falsely rejecting a candidate if f replaces
a with 0. Fortunately, this case can be detected and
programs can be transformed to avoid it by removing
the offending constants from one literal and adding
a multi-argument gather, this issue does not funda-
mentally impact the correctness of our algorithm. We
can, for example, rewrite the program from earlier to

x = [a, b];

y = f(x);

z0 = [⊥, c];
z = [x[0], z0[1]];

. . .

which keeps x live until z is defined, preventing us
from unsoundly rejecting programs (at the cost of
somewhat lower pruning accuracy).

4.1 Copy count viability

One limitation of our pair-reachability test is that
it cannot detect when there are too many copies
of a value, as shown in Listing 9. This limitation
arose in practice during larger polynomial multipli-
cation benchmarks, where the synthesis task required
choosing 16 conditionals that control when the values
a1b1, a1b2, a2b1, a2b2 would be added to four accumu-
lators. In the typical correct solutions, 8 of the syn-
thesized conditionals would be false. However, us-
ing solely viable pairs, we would accept any choice
for those 8 holes, since they were a superset of the
correct program, causing the benchmark to time out.

To address this problem (taking the polynomial
multiplication search time to 3 seconds), we added
Algorithm 4, the copy count viability test. This copy
count test allows us to detect when it must be the case
that too many copies of a value will appear in the en-
tirety of the final output. It rests on a computation
of min(g ← vi), the lower bound on how many times
the value in vi will be copied into the output. This
can be computed by working backwards through a
program sketch, beginning with min(gi ← gi)(g) = 1
and, for any gather, noting that the minimum copies
of each input location is the sum of the minimum
copies of each of the output locations that read from

it (plus any copies made by other statements). Tak-
ing the minimum over all gathers in a hole (and using
the same “folds place multiple values in a box” ab-
straction seen in Figure 7) produces the solution to
min(g ← vi)(s) for the entire program.

5 Results

Our empirical evaluation focused on three main ques-
tions

1. How scalable is our algorithm? What causes it
to stop being effective?

2. How effective are our viability tests?

3. How do we compare to Swizzle Inventor [14], the
previous work on this problem?

5.1 Benchmarks

The Swizzleflow synthesis model can be applied to
multiple platforms by changing what array dimen-
sions (which can represent variation in time and
space) mean and through changing the contents of
the holes in the sketch. For example, on the HVX
processor, we represented native swizzling instruc-
tions such as valign, which joins together por-
tions of two registers, as gathers, and then have
a ?hvx recombine vectors hole that selects be-
tween instances of these instructions with various ar-
guments. On GPUs, however, we used gathers that
modelled the expressions generally found in swizzling
code on the GPU so that experts could use Swiz-
zleflow to discover them. This template, originally
developed for Swizzle Inventor, consists of composi-
tions of a fan operations with a rotation, with op-
tional grouping in between each steps. We were able
to generate gathers from all the expressions in this
grammar and use those sets of functions for synthe-
sis.

Our primary benchmark set, the GPU benchmarks,
which were taken from Swizzle Inventor and represent
computations from multiple computational domains.
We varied the input sizes in these benchmarks to eval-
uate scalability. These benchmarks are

Trove (CRC) A 32 × s matrix transposition us-
ing the algorithmic strategy from Ben-Sasson at
al. [5]

Trove (Sum) A variant of CRC Trove that sums
the values on each thread, eliminating the final
in-register permutation.

11

x = ?choose(a, 0) // min(o ← x)(x) = 1
y = ?choose(a, 0) // min(o ← y)(y) = 1
z = ?choose(b, 0) // min(o ← z)(z) = 1
o = x + y + z // min(o ← o) = 1
assert o == a + b

(a) Program sketch

x = a

y = a

z = ?choose(b, 0)

o = x + y + z

assert o == a + b

(b) Partially-synthesized candidate

Listing 9: An example scalar program showing how the reachability test cannot detect extra copies of values.
The candidate program on the right will not be rejected by the reachability test since the a could come from
x or y. After defining y in the candidate, we can observe that two copies of a must reach o, which lets us
reject the program since o needs to be reachable by at most one copy of a (computing a + a cannot create
a+ b). The min(o← v)(s) values count the minimum number of times v can appear in o (if execution starts
at s).

Algorithm 4 Viability test using minimum copy counts

function viable copy count(s, σ, g, c)
for all a ∈ U(s) do

t← |c[i] = a| . the expected number of copies of a

b←
∑

σ[vi]=a
v live at s

min(g ← vi)(s) . the lower bound on how many times a could appear in g, computed

from bounds on each location.
if b > t then return false
end if

end for
return true

end function

12

Trove (RCR) A variant on Trove (CRC), an ex-
ample of which is shown in Listing 1, where the
data is permuted while it is loaded from mem-
ory, allowing the final in-register permutation to
be eliminated

1D Convolution Application of a length k filter
that is passed as a parameter w1, . . . wk to an
array of length 32 + k− 1. This version, like the
one used in Swizzle Inventor, does not swizzle the
weight array, though we successfully synthesized
versions of this benchmark that did.

2D Stencil Application of some fixed k× k filter to
a (4 + k − 1)× (4 + k − 1) array loaded onto 16
threads

FFM (registers) Finite field multiplication. Algo-
rithms for polynomials of degree 32 and 64 were
simulated with degree 4 and 8, respectively, on
Swizzle Inventor. The data was loaded into reg-
isters on each thread.

The one Swizzle Inventor benchmark we were not able
to synthesize in less than 30 minutes was a variant
on FFM that placed the data into shared memory for
reasons we will discuss below.

In all of these benchmarks, we used the Level 3
grammar from Swizzle Inventor (all compositions of
fans, rotations, and grouping) to construct our sets
of swizzles, which includes with their full grammar of
Boolean conditionals.

To show that our system can be used for mul-
tiple platforms, we also defined a set of swizzles
representing several HVX instructions (v[l]align,
vshuff[o/e], and vmux, and a move) to any (two,
if needed) registers in the synthesized input to con-
struct a new register. Six of these holes were used
to synthesize the data movement shown in Figure 9,
which was taken from the HVX SDK’s Gaussian fil-
ter [10] to create the HVX Gaussian benchmark.
This benchmark used registers of length 8 to repre-
sent the length 128 registers seen on real processors,
taking advantage of the length-invariance required by
HVX programs.

All benchmarks, including the Swizzle Inventor
comparisons, were run on a laptop with an Intel i7-
8565U CPU and 16 GB of RAM. We synthesized all
solutions, both to ensure results were deterministic
(so that randomness in the hash function used to
deduplicate gathers would not impact search time)
and to provide a fair comparison against Swizzle In-
ventor, which used a simple cost model to guide Z3
on some benchmarks.

0 2 4 6
1 3 5 7

r0
r1

-7 -5 -3 -1r2

8 10 12 14r3

0 2 4 6
1 3 5 7

5-1

0 2 4 6
1 3 5 72×
2 4 6 8

+

+

-1+ 2× 0+ 1
0+ 2× 1+ 2

2×
6+ 2× 7+ 8

2×
1 3

Figure 9: The data movement used in a handwritten
Gaussian filter for the HVX platform which gives a 2x
speedup over code generated by Halide. Synthesizing
this code was our HVX Gaussian benchmark.

5.2 Scalability

Our main scalability results are shown in Figure 10.

These results show that we could synthesize smaller
problems in seconds and that, when we moved to
larger problem sizes, we only needed a minute or two
to complete the synthesis of, say, a 9 × 9 2D stencil.
Overall, they demonstrate that our algorithm scales
effectively to larger instances of multiple problems.
(The HVX Gaussian benchmark, not shown in the
main plot, was synthesized in 0.6 seconds.)

The results show the polynomial scaling expected
from the fact that matrix multiplication is a large
portion of our algorithm. However, we obtain im-
proved performance on some benchmarks, like the 1D
convolution of size 11, by caching statement matrices
between multiple experiments.

For most GPU benchmarks, the limit to our scal-
ability was a lack of RAM. 32 × 11 transposes and
length 15 1D convolutions (and transposes with sum)
could not be computed due to memory limits. For ex-
ample, the 32× 11 transposes required us to keep in
memory five matrices, each with (32 ·11)2

2 ≈ 233 bits
of required storage space. Since these matrices had
significant variance in their densities and structure,
we did not attempt to store them in a sparse format
and instead accepted RAM as the current limit to our
scalability.

In the 2D stencil benchmark, however, using an
11 × 11 filter required synthesizing there condition-
als simultaneously in order to create code equiva-
lent to cond0 ? 0 : cond1 ? 1 : cond2 ? 2

: 3, while previous benchmarks only required one
or two conditionals. Enumerating these triples of ex-
pressions and constructing their corresponding state-
ment matrix caused us to exceed our timeout of 30
minutes.

13

3 5 7 9 11 13

Filter dimension

0

10

20

Ti
m

e
(s

)

1D Convolution

3 5 7 9

Filter dimension
0

100

Ti
m

e
(s

)

2D Stencil

4 8

Degree
0

1

2

Ti
m

e
(s

)

FFM (registers)

1 2 3 4 5 7 9

Array width
0

50

100

Ti
m

e
(s

)

Trove (CRC)

1 2 3 4 5 7 9

Array width
0

50

100

Ti
m

e
(s

)

Trove (RCR)

1 2 3 4 5 7 9 11 13

Array width

0

20

Ti
m

e
(s

)

Trove (Sum)

Synthesis times (full GPU swizzle grammar)

Figure 10: Swizzleflow performance on the GPU benchmarks vs problem size (as defined for each benchmark)
using the full grammar of GPU swizzles. Times include both computation of reachability data and search
for all solutions.

5.3 Pruning effectiveness

Our main metric for evaluating the effectiveness of
our pruning method was comparing the number of
states we constructed to how many were visited when
using an oracle that had information on whether a
given candidate state was part of a solution. 45% of
our GPU benchmarks had this ineffectiveness factor
of 1.0, meaning that the pruning algorithm visited no
more states than the oracle did. Of the remainder,
many, like the 7×7 stencil, had ineffectiveness factors
close to 1, such as 1.01. The full results are shown in
Figure 11.

One main cause for higher ineffectiveness fac-
tors, such as those seen in polynomial multiplication
(where width 8 has an ineffectiveness of 27.6) came
from the difficulty of combining swizzles for multiple
arguments. In polynomial multiplication, we much
choose elements of the inputs a and b that each thread
will multiply on each loop iteration. When searching,
many choices of a and b are valid individually but
not compatible with each other, a circumstance our
search procedure rarely detects until after the multi-
plications are performed. An oracle, however, would
be aware of the impending incompatibility and ter-
minate the search. A milder version of this effect
appears in a variant of the 1D convolution bench-
mark that also swizzles the weights array, where the
convolution can either occur left to right or right to

left, but the incompatibles between when the data
and weights are swizzled in the opposite way are not
detectable until the fold× operation is performed.

This multi-argument filtering problem is the cause
of our one inability to replicate the width-8 shared
memory polynomial multiplication benchmark from
Swizzle Inventor within our 30 minute timeout
(though we did complete it in an hour). Most of
the time in that benchmark was spent filtering the
2240 · 2240 states that arose from swizzling a and b.
Compared to the register benchmark, this cross prod-
uct of possibilities was much larger due to the greater
freedom afforded by loading directly from all of a (or
b) during the computation.

Another source of ineffectiveness came from the
limited precision of our pruning algorithm. This oc-
curred to some extent in the row-column-row Trove
benchmarks, where the expressiveness of the swizzle
grammar led us to be unable to reject some states af-
ter the first swizzle (how data should be loaded from
memory) was chosen because they were similar to cor-
rect ones. Applying the column swizzles (which were
a smaller set of functions) allowed us to eliminate
these mistakes, preventing them from escalating ex-
ponentially.

A more extreme example is the HVX Gaussian
benchmark, whose ineffectiveness factor was 51.3.
This arose from the fact that six of the HVX instruc-

14

3 5 7 9 11 13
Filter dimension

1.0

1.5

2.0
1D Convolution

3 5 7 9
Filter dimension

1.0

1.5

2.0
2D Stencil

4 8
Degree

10

20

FFM (registers)

1 3 5 7 9
Array width

1.0

1.5

2.0
Trove (CRC)

1 2 3 4 5 7 9
Array width

1.0

1.5

2.0

Trove (RCR)

1 3 5 7 9 11 13
Array width

1.0

1.5

2.0
Trove (Sum)

States visited compared to oracle (full GPU swizzle grammar)

Figure 11: Plots of the ineffectiveness factor for Swizzleflow — how many states its search visited compared
to an optimal pruning oracle for various GPU benchmarks.

tions could, from the perspective of the abstraction,
move a pair of values from the initial input (which
was available in each synthesis step as a source of
arguments for the remaining swizzles) to any pair of
locations in the output. This saturation was resolved
after the first register was defined for each half of the
computation (the computation of the odd or even re-
sults). This shows the continued necessity of control-
ling the expressivity of the synthesis grammar when
using Swizzleflow, and demonstrates further avenues
for research such as applying abstraction refinement
in the Swizzleflow context.

Another piece of evidence for the overall effective-
ness of our pruning techniques can be seen in Fig-
ure 12, which shows how Swizzleflow spent its time
during selected benchmarks. This figure shows that
our search procedure was rarely a significant portion
of our run time (it often took much less than a sec-
ond), which demonstrates the utility of our pruning
methods and the importance of the viability matri-
ces to quickly executing them. (A notable exception
to this negligible search time is polynomial multiply
with width 8, which took 3 seconds to complete its
search process.)

This time breakdown also shows the advantages to
caching statement matrices. This can be seen in the
fact that CRC trove of size 7 spends some time creat-
ing statement matrices, while RCR trove with size 7,
which uses the same holes in a different order, spends
most of its time performing matrix multiplication.

5.4 Comparisons to Swizzle Inventor

As shown in Figure 13, our pruning method al-
lowed us obtain dramatic speedups (frequently at
least 100x!) over Swizzle Inventor on their bench-
marks. In many cases, we solved benchmark sizes,
such as a 7×7 2D stencil, that Swizzle Inventor could
not.

Swizzle Inventor imposed grammar restrictions,
such as limiting the constants considered for various
operations, in order to successfully synthesize many
of these benchmarks quickly. When we imposed sim-
ilar restrictions on our swizzles, our stencil synthe-
sis speedups remained, while the Trove benchmarks
were only up to 5x faster in most cases. In some CRC
Trove instances, Swizzle Inventor was faster with the
restricted grammar (though, for both tools, synthesis
took only a few seconds) due to their solver (Z3)’s
ability to detect symmetries in and invariants about
their grammar and sketch.

However, those limited speedups also show the ad-
vantage of Swizzleflow’s pruning method. One key
reason for our performance increase was that precom-
puting the abstract viability data takes significantly
less time than Z3 or other solvers need to discover (or
rediscover) invariants about their search space. An-
other cause of these speedups was that, in Swizzle-
flow, we synthesized over sets of gathers, not expres-
sions, which allowed us to only explore many expres-
sions in the GPU swizzle grammar that had different
syntax but the same semantics only once, while Z3
had to find these equivalences or try incorrect pro-
grams multiple times.

These results show the great benefits that can come

15

Total time: 37.44 seconds

Trove (CRC, s=7)

Total time: 30.48 seconds

Trove (RCR, s=7)

Total time: 7.83 seconds

1D convolution (k=7)

Total time: 1.06 seconds

Trove (RCR, s=3)

Time used by Swizzleflow parts in various benchmarks

Mat. creation Mat. reuse Mat. multiply Search

Figure 12: Time spent in different phases of Swizzleflow execution during selected benchmarks.

from using properties of the application domain to
guide a synthesis problem.

6 Related Work

Accelerator performance improvement Many
tools have been developed that attempt to use search
or synthesis to create performant accelerator pro-
grams. Tools such as AutoTVM [6], Lift [18], and
Tiramisu [3] primarily aim to solve the scheduling
problem and find an efficient way to decompose a
computation, such as a neural network, into smaller
parts that can be executed optimally on an acceler-
ator. While these systems do explore optimizations
such as operator fusion and sometimes aim to gener-
ate efficient kernels, they do not explore the full space
of swizzles.

Another class of tools, such as FFTW [7] and SLin-
Gen [17] generate highly efficient code for particu-
lar operations (such as the Fourier transform or ma-
trix algebra) and can sometimes target multiple plat-
forms. This places them in a middle ground between
the swizzle synthesis problem we solve and superopti-
mizers, such as Lens [13] or Souper [11], which aim to
generate the most efficient code for any operation and
often use similar pruning techniques to those seen is
swizzle synthesis.

Swizzle synthesis The most directly related work
on this problem is Swizzle Inventor [14], which de-

fined our swizzle grammar and could synthesize com-
plex data movement on GPUs. Similar work was per-
formed by Cowan et al. [2], who aimed to synthesize
efficient code for quantized versions of many math-
ematical operators (those that use integers instead
of floating point numbers). SynthCL [19] also aimed
to generate GPU swizzles, though did not search the
same space of non-affine expressions as Swizzle In-
ventor. Work by Barthe et al. [4] and that seen in
BitStream [16] aimed to synthesize swizzles in the
context of x86’s SIMD instructions, with BitStream
focusing on cryptographic operations. In general, this
prior work focused on synthesis tasks that targeted
particular hardware and did not develop platform-
independent models or abstractions.

Pruning enumerate synthesis Our dataflow
analysis-based pruning approach is not entirely novel,
having also been used by Mukherjee et al. [11] to
prune away partially-instantiated candidates during
superoptimization. Their work uses several different
abstractions to analyze how expressions (both con-
crete ones and those with uninstantiated holes) ma-
nipulate individual bits and use this to reject pro-
grams. For example, their analyses observe that the
expression x << Constant cannot be an optimization
of 3 * x | 1, since the latter’s final bit must be 1,
but the former’s rightmost bit cannot be guaranteed
to be 1. Their use of these techniques improved the
performance of their enumerative search significantly,

16

3 5 7

Filter dimension
0

1000

Sp
ee

du
p

fa
ct

or
2D Stencil

2 3 4 5 7

Array width
0

20

40

Sp
ee

du
p

fa
ct

or

Trove (CRC)

1 2 3 4 5 7

Array width
0

500

Sp
ee

du
p

fa
ct

or

Trove (RCR)

2 3 4 5 7

Array width
0

50

100

Sp
ee

du
p

fa
ct

or

Trove (Sum)

Synthesis speedups (full GPU swizzle grammar)

Figure 13: Speedup for Swizzleflow compared to Swizzle Inventor when using the full grammar of GPU
swizzles defined by Swizzle Inventor for various GPU code synthesis benchmarks. Infinite speedups represent
benchmarks we could solve that Swizzle Inventor could not solve in 30 minutes.

just as in Swizzleflow.

More generally, domain-specific abstractions that
are used to detect that continuing a search would not
be useful are seen throughout program synthesis liter-
ature, from Scythe [20], which uses a multi-phase pro-
cess to more efficiently synthesize SQL queries, to the
work of Guo et al. [8], which successively refines ab-
stract representations in order to find a Haskell func-
tion with a given type signature. These abstractions
are common enough that Wang et al. have developed
a system [21] for learning such abstractions automat-
ically to speed up synthesis problems.

7 Conclusions

We have presented Swizzleflow, a language that we
have used to express the irregular mappings of data
to memories and compute elements needed to obtain
performance on mathematical accelerators such as
GPUs and vector processors. Using this model, we
have been able to synthesize these mappings more
scalably than previous work using pruning methods
based on dataflow analysis.

Acknowledgements I would like to thank my ad-
visor, Rastislav Bodik, for his extensive advice and
feedback on this project. This work would not be
where it is without him. I would also like to thank
Sam Kaufman for his assistance in developing many
of the ideas presented here and Maaz Ahmad for help
creating the HVX benchmarks and obtaining con-
crete performance numbers.

This work was supported in part by the CONIX
Research Center, one of six centers in JUMP, a
Semiconductor Research Corporation (SRC) program
sponsored by DARPA.

References

[1] Giancarlo Alfonsi et al. “Performances of
Navier-Stokes Solver on a Hybrid CPU/GPU
Computing System”. In: Parallel Computing
Technologies. Ed. by Victor Malyshkin. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 404–416. isbn: 978-3-642-23178-0.

[2] “Automatic generation of high-performance
quantized machine learning kernels”. In: 2020,

17

pp. 305–316. isbn: 9781450370479. doi: 10 .

1145/3368826.3377912.

[3] Riyadh Baghdadi et al. “Tiramisu: A Polyhe-
dral Compiler for Expressing Fast and Portable
Code”. In: CGO 2019 - Proceedings of the 2019
IEEE/ACM International Symposium on Code
Generation and Optimization (2019), pp. 193–
205. doi: 10.1109/CGO.2019.8661197. arXiv:
1804.10694.

[4] Gilles Barthe et al. “From relational verifi-
cation to SIMD loop synthesis”. In: Prin-
ciples and Practice of Parallel Programming
(PPoP). Vol. 48. 8. 2013, pp. 123–133. isbn:
9781450319225. doi: 10 . 1145 / 2517327 .

2442529.

[5] Bryan Catanzaro, Alexander Keller, and
Michael Garland. “A decomposition for in-
place matrix transposition”. In: Principles and
Practice of Parallel Programming, PPoPP.
2014, pp. 193–206. doi: 10.1145/2555243.

2555253. url: https://doi.org/10.1145/
2555243.2555253.

[6] Tianqi Chen et al. “Learning to Optimize Ten-
sor Programs”. In: Advances in Neural Infor-
mation Processing Systems 31. Ed. by S. Bengio
et al. Curran Associates, Inc., 2018, pp. 3389–
3400. url: http://papers.nips.cc/paper/
7599 - learning - to - optimize - tensor -

programs.pdf.

[7] Matteo Frigo. “A fast fourier transform com-
piler”. In: ACM SIGPLAN Notices 39.4 (2004),
pp. 644–655. issn: 03621340. doi: 10.1145/

301618.301661.

[8] Zheng Guo et al. “Program Synthesis by Type-
Guided Abstraction Refinement”. In: POPL.
Vol. 1. January. 2020.

[9] Bastian Hagedorn et al. “Fireiron: A Data-
Movement-Aware Scheduling Language for
GPUs”. In: Proceedings of the ACM Inter-
national Conference on Parallel Architectures
and Compilation Techniques. PACT ’20. Vir-
tual Event, GA, USA: Association for Com-
puting Machinery, 2020, pp. 71–82. isbn:
9781450380751. doi: 10 . 1145 / 3410463 .

3414632. url: https://doi.org/10.1145/
3410463.3414632.

[10] Qualcomm Inc. Hexagon DSP SDK Tools & Re-
sources. url: https://developer.qualcomm.
com/software/hexagon-dsp-sdk/tools.

[11] Manasij Mukherjee et al. “Dataflow-based
Pruning for Speeding up Superoptimization”.
In: vol. 4. November. 2020. doi: 10 . 1145 /

3428245.

[12] Patrick E O’Neil and Elizabeth J O’Neil. “A
fast expected time algorithm for boolean ma-
trix multiplication and transitive closure”. In:
Information and Control 22.2 (1973), pp. 132–
138.

[13] Phitchaya Mangpo Phothilimthana et al. “Scal-
ing up Superoptimization”. In: Proceedings of
the Twenty-First International Conference on
Architectural Support for Programming Lan-
guages and Operating Systems - ASPLOS ’16.
Atlanta, GA: ACM, Apr. 2016, pp. 297–310.
isbn: 9781450340915. doi: 10.1145/2872362.
2872387. url: http : / / dl . acm . org /

citation.cfm?doid=2872362.2872387.

[14] Phitchaya Mangpo Phothilimthana et al.
“Swizzle Inventor: Data Movement Synthe-
sis for GPU Kernels”. In: Proceedings of the
Twenty-Fourth International Conference on
Architectural Support for Programming Lan-
guages and Operating Systems. ASPLOS ’19.
Providence, RI, USA: ACM, 2019, pp. 65–
78. isbn: 978-1-4503-6240-5. doi: 10 . 1145 /

3297858.3304059. url: http:/ /doi.acm .

org/10.1145/3297858.3304059.

[15] Thomas Reps, Susan Horwitz, and Mooly Sa-
giv. “Precise Interprocedural Dataflow Analysis
via Graph Reachability”. In: Proceedings of the
22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL
’95. San Francisco, California, USA: Associa-
tion for Computing Machinery, 1995, pp. 49–
61. isbn: 0897916921. doi: 10.1145/199448.
199462. url: https://doi.org/10.1145/

199448.199462.

[16] Armando Solar-Lezama et al. “Programming
by sketching for bit-streaming programs”. In:
Programming Language Design and Implemen-
tation (PLDI). Vol. 40. 6. Chicago, IL: ACM,
2005, pp. 281–294. isbn: 1595930566. doi: 10.
1145/1064978.1065045.

[17] Daniele G. Spampinato et al. “Program Gener-
ation for Small-Scale Linear Algebra Applica-
tions”. In: Proceedings of the 2018 International
Symposium on Code Generation and Optimiza-
tion. CGO 2018. Vienna, Austria: Association
for Computing Machinery, 2018, pp. 327–339.
isbn: 9781450356176. doi: 10.1145/3168812.
url: https://doi.org/10.1145/3168812.

18

https://doi.org/10.1145/3368826.3377912
https://doi.org/10.1145/3368826.3377912
https://doi.org/10.1109/CGO.2019.8661197
https://arxiv.org/abs/1804.10694
https://doi.org/10.1145/2517327.2442529
https://doi.org/10.1145/2517327.2442529
https://doi.org/10.1145/2555243.2555253
https://doi.org/10.1145/2555243.2555253
https://doi.org/10.1145/2555243.2555253
https://doi.org/10.1145/2555243.2555253
http://papers.nips.cc/paper/7599-learning-to-optimize-tensor-programs.pdf
http://papers.nips.cc/paper/7599-learning-to-optimize-tensor-programs.pdf
http://papers.nips.cc/paper/7599-learning-to-optimize-tensor-programs.pdf
https://doi.org/10.1145/301618.301661
https://doi.org/10.1145/301618.301661
https://doi.org/10.1145/3410463.3414632
https://doi.org/10.1145/3410463.3414632
https://doi.org/10.1145/3410463.3414632
https://doi.org/10.1145/3410463.3414632
https://developer.qualcomm.com/software/hexagon-dsp-sdk/tools
https://developer.qualcomm.com/software/hexagon-dsp-sdk/tools
https://doi.org/10.1145/3428245
https://doi.org/10.1145/3428245
https://doi.org/10.1145/2872362.2872387
https://doi.org/10.1145/2872362.2872387
http://dl.acm.org/citation.cfm?doid=2872362.2872387
http://dl.acm.org/citation.cfm?doid=2872362.2872387
https://doi.org/10.1145/3297858.3304059
https://doi.org/10.1145/3297858.3304059
http://doi.acm.org/10.1145/3297858.3304059
http://doi.acm.org/10.1145/3297858.3304059
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/1064978.1065045
https://doi.org/10.1145/1064978.1065045
https://doi.org/10.1145/3168812
https://doi.org/10.1145/3168812

[18] Michel Steuwer, Toomas Remmelg, and
Christophe Dubach. “LIFT: A functional
data-parallel IR for high-performance GPU
code generation”. In: CGO 2017 - Proceedings
of the 2017 International Symposium on
Code Generation and Optimization. IEEE,
2017, pp. 74–85. isbn: 9781509049318. doi:
10.1109/CGO.2017.7863730.

[19] Emina Torlak and Rastislav Bodik. “A
lightweight symbolic virtual machine for
solver-aided host languages”. In: Program-
ming Language Design and Implementation
(PLDI). Vol. 49. 6. 2014, pp. 530–541. isbn:
9781450327848. doi: 10 . 1145 / 2594291 .

2594340.

[20] Chenglong Wang, Alvin Cheung, and Rastislav
Bodik. “Synthesizing Highly Expressive
SQL Queries”. In: Programming Language
Design and Implementation. 2017. isbn:
9781450349888. doi: 10 . 1145 / 3062341 .

3062365.

[21] Xinyu Wang et al. “Learning abstractions
for program synthesis”. In: Lecture Notes in
Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 10981 LNCS (2018),
pp. 407–426. issn: 16113349. doi: 10.1007/

978-3-319-96145-3_22.

19

https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1007/978-3-319-96145-3_22
https://doi.org/10.1007/978-3-319-96145-3_22

	Introduction
	The Swizzleflow language
	Swizzleflow synthesis for transpose
	Reachability for scalars in SSA programs
	Reachability analysis in Swizzleflow
	Computing pair reachability

	Viability testing with arithmetic
	Copy count viability

	Results
	Benchmarks
	Scalability
	Pruning effectiveness
	Comparisons to Swizzle Inventor

	Related Work
	Conclusions

